精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0,x∈R)的最小正周期为π.
(1)求ω的值;
(2)在给定的平面直角坐标系中,画出函数f(x)在区间[0,π]上的图象;
(3)求函数f(x)的最大值,并写出使函数f(x)取得最大值的x的集合.

分析 (1)由条件根据正弦函数周期性求得ω的值.
(2)由条件利用五点法作出函数f(x)在区间[0,π]上的图象.
(3)根据正弦函数的值域并结合f(x)的图象求得f(x)在区间[0,π]上的最大值以及f(x)取得最大值的x的集合.

解答 解:(1)∵函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0,x∈R)的最小正周期为π,∴$\frac{2π}{ω}$=π,∴ω=2.
(2)由x∈[0,π],可得2x+$\frac{π}{6}$∈间[$\frac{π}{6}$,$\frac{13π}{6}$],列表如下:

 2x+$\frac{π}{6}$ $\frac{π}{6}$ $\frac{π}{2}$ π $\frac{3π}{2}$2π  $\frac{13π}{6}$
 x 0 $\frac{π}{6}$ $\frac{5π}{12}$ $\frac{2π}{3}$ $\frac{11π}{12}$ π
 y $\frac{1}{2}$ 1 0-1 0 
作图:

(3)当2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈z时,即x=kπ+$\frac{π}{6}$,k∈z时,函数f(x)取得最大值为1.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,用五点法作函数在一个周期上的简图,正弦函数周期性和的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设b>0,椭圆方程为$\frac{{x}^{2}}{2{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,抛物线方程为y=$\frac{1}{8}$x2+b,如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的焦点为G,已知抛物线在G点的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆的左右端点,P点在抛物线上,证明:抛物线上存在四个点P,使△ABP为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2\sqrt{5}+\frac{\sqrt{2}}{2}t}\\{y=2\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上的所有点的横坐标缩为原来的$\frac{1}{2}$倍,再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的点到直线l放入距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=lnx图象在点(x0,f(x0))处的切线经过(0,1)点,则x0的值为e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于集合M,定义函数fM(x)=$\left\{\begin{array}{l}{-1,x∈M}\\{1,x∉M}\end{array}\right.$,对于两个集合M、N,定义集合M⊕N={x|fM(x)•fN(x)=-1},已知A={2,4,6,8,10},B={1,2,4,5,6,8,9},则集合A⊕B=(  )
A.{1,5,9,10}B.{1,5,9}C.{2,4,6}D.{2,4,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线与圆(x-a)2+y2=4(a>0)相切,则a=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a∈R,复数i2-ai在复平面内对应的点在直线x-y=0上,则实数a的值是(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点坐标分别为F1,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(1,2),则此双曲线的标准方程是x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,记函数f(x)满足条件$\left\{\begin{array}{l}{f(2)≤12}\\{f(-2)≤4}\end{array}\right.$为事件为A,则事件A发生的概率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案