分析 (1)先求出G点的坐标,利用导数求出过点G的切线斜率,得到过点G的切线方程,根据由切线方程求得的F1点的坐标,与用椭圆方程得F1点的坐标应该相同,求出b,椭圆和抛物线的方程可得;
(2)以∠PAB为直角的Rt△ABP只有一个,以∠PBA为直角的Rt△ABP只有一个,以AB为直径的圆与抛物线有两个交点,根据直径对的圆周角等于直角,以∠APB为直角的Rt△ABP有两个.所以共得到4个直角三角形.
解答 解:(1)抛物线方程为y=$\frac{1}{8}$x2+b,
当y=b+2得x=±4,∴G点的坐标为(4,b+2),
由y′=$\frac{1}{4}$x,即有y'|x=4=1,
过点G的切线方程为y-(b+2)=x-4即y=x+b-2,
令y=0得x=2-b,∴F1点的坐标为(2-b,0),
由椭圆方程得F1点的坐标为(b,0),
∴2-b=b即b=1,
即椭圆和抛物线的方程分别为$\frac{{x}^{2}}{2}$+y2=1和y=$\frac{1}{8}$x2+1;
(2)证明:∵过A作x轴的垂线与抛物线只有一个交点P,
∴以∠PAB为直角的Rt△ABP只有一个,
同理以∠PBA为直角的Rt△ABP只有一个;
若以∠APB为直角,则点P在以AB为直径的圆上,而以AB为直径的圆与抛物线有两个交点.
所以,以∠APB为直角的Rt△ABP有两个;
因此抛物线上存在四个点使得△ABP为直角三角形.
点评 本题考查利用导数求切线的斜率,待定系数法求椭圆和抛物线的方程,体现了分类讨论的数学思想.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{\sqrt{41}}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9和6 | B. | 6和$\frac{18}{5}$ | C. | 9和5 | D. | 9和$\frac{18}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com