精英家教网 > 高中数学 > 题目详情
12.若变量x,y满足约束条件$\left\{\begin{array}{l}{2x+3y≥6}\\{x-y≥0}\\{x≤3}\end{array}\right.$,则函数z=2x+y的最大值和最小值分别是(  )
A.9和6B.6和$\frac{18}{5}$C.9和5D.9和$\frac{18}{5}$

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值和最小值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=3}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即B(3,3),
代入目标函数z=2x+y得z=2×3+3=9.
即目标函数z=2x+y的最大值为9.
当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{2x+3y=6}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{6}{5}}\\{y=\frac{6}{5}}\end{array}\right.$,即A($\frac{6}{5}$,$\frac{6}{5}$),
代入目标函数z=2x+y得z=2×$\frac{6}{5}$+$\frac{6}{5}$=$\frac{18}{5}$.
即目标函数z=2x+y的最小值为$\frac{18}{5}$.
则z=2x+y的最大值和最小值分别是9和$\frac{18}{5}$,
故选:D

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的中心在原点,焦点在x轴上,短轴长为2,离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆C长轴上的一个动点,过P作斜率为$\frac{1}{2}$的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设b>0,椭圆方程为$\frac{{x}^{2}}{2{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,抛物线方程为y=$\frac{1}{8}$x2+b,如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的焦点为G,已知抛物线在G点的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆的左右端点,P点在抛物线上,证明:抛物线上存在四个点P,使△ABP为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C:x2+y2-2x-5y+4=0,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为y2-$\frac{{x}^{2}}{15}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是(  )
A.若m∥n,m∥α且n∥β,则α∥β??????????
B.若m⊥n,m∥α且n∥β,则α⊥β?
C.若m∥α且n⊥m,则n⊥α????????????????????
D.若m⊥n,m⊥α且n⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在长为16cm的线段AB上任取一点C,现做一矩形,邻边长分别为AC,BC的长,则该矩形的面积大于60cm2的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2\sqrt{5}+\frac{\sqrt{2}}{2}t}\\{y=2\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上的所有点的横坐标缩为原来的$\frac{1}{2}$倍,再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的点到直线l放入距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=lnx图象在点(x0,f(x0))处的切线经过(0,1)点,则x0的值为e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点坐标分别为F1,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(1,2),则此双曲线的标准方程是x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案