精英家教网 > 高中数学 > 题目详情
17.在长为16cm的线段AB上任取一点C,现做一矩形,邻边长分别为AC,BC的长,则该矩形的面积大于60cm2的概率为$\frac{1}{4}$.

分析 设AC=x,则BC=16-x,由矩形的面积S=x(16-x)>60可求x的范围,利用几何概率的求解公式可求.

解答 解:设AC=x,则BC=16-x(0<x<16)
矩形的面积S=x(16-x)>60,
∴x2-16x+60<0
∴6<x<10
由几何概率的求解公式可得,矩形面积大于60cm2的概率P=$\frac{10-6}{16}=\frac{4}{16}$=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.

点评 本题主要考查了二次不等式的解法,与区间长度有关的几何概率的求解公式的应用,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点(0,1).圆C1:x2+y2=a2+b2
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆C有且只有一个公共点M,且l与圆C1相交于A,B两点,问$\overrightarrow{AM}+\overrightarrow{BM}$=0是否成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(1,$\frac{3}{2}}$),且椭圆的左、右焦点分别为F1(-1,0)、F2(1,0),过椭圆的右焦点F2作两条互相垂直的直线,分别交椭圆于点 A、B及C、D.
(1)求椭圆的方程;
(2)求$\frac{1}{{|{{A}{B}}|}}$+$\frac{1}{{|{CD}|}}$的值;
(3)求|AB|+$\frac{9}{16}$|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,命题p:f(x)=$\frac{\sqrt{2}}{2}$cos(2x+$\frac{π}{4}$)+sin2x+a,x∈R,3≤f(x)≤6恒成立:命题q:g(x)=log3(ax2+ax+1)的定义域为R,若p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足约束条件$\left\{\begin{array}{l}{2x+3y≥6}\\{x-y≥0}\\{x≤3}\end{array}\right.$,则函数z=2x+y的最大值和最小值分别是(  )
A.9和6B.6和$\frac{18}{5}$C.9和5D.9和$\frac{18}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点F是抛物线y2=2px的焦点,其中p是正常数,点M的坐标为(12,8),点N在抛物线上,且满足$\overrightarrow{ON}$=$\frac{3}{4}$$\overrightarrow{OM}$,O为坐标原点.
(1)求抛物线的方程;
(2)若AB,CD都是抛物线经过点F的弦,且AB⊥CD,AB的斜率为k,且k>0,C.A两点在x轴上方,△AFC与△BFD的面积之和为S,求当k变化时S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆x2+y2-2x+4y+3=0的圆心坐标为(  )
A.(-1,2)B.(1,-2)C.(-2,4)D.(2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数y=2sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,再把所得图象上各点的横坐标扩大为原来的2倍,则所得的函数的解析式是(  )
A.y=2sin(x+$\frac{3π}{8}$)B.y=2sin(x+$\frac{π}{8}$)C.y=2sinxD.y=2sin4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的一元二次方程x2-2(a-2)x-b2+12=0.
(1)若a,b是一枚正方形的骰子(骰子六个面上分别标以数字1,2,3,4,5,6)掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程有实根的概率.

查看答案和解析>>

同步练习册答案