精英家教网 > 高中数学 > 题目详情
15.方程x3-6x2+9x-10=0的实数根有1个.

分析 应用导数的几何意义易判断函数的增减性,然后根据极值判断实根的个数.

解答 解:设f(x)=x3-6x2+9x-10,
则f′(x)=3x2-12x+9
令f′(x)=0得x1=1或x=3.
∴x≤1时,f(x)单调递增,极大值为-6;
当1<x≤3时,f(x)单调递减,极小值为-10;
当x>3时,f(x)单调递增,极小值为-10,
由上分析知y=f(x)的图象如图,与x轴只有一个公共点,
所以方程x3-6x2+9x-10=0只有一个实根.
故答案为:1.

点评 本题考查方程和函数的关系,导数的运用:求单调区间和极值,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若角α终边在第二象限,则π-α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设Sn是公差不为零的等差数列{an}的前n项和,且a1>0,若S5=S9,则当Sn最大时,n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.营养学家指出,高中学生良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费35元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费28元.为了满足营养专家指出的 日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知(1-2x)n的展开式中,奇数项的二项式系数之和是64,则(1-2x)n的展开式中,x4的系数为560.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足z(1-2i)=i,则复数对应的点在复平面对应的点位于  (  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+$\frac{t}{x}$有如下性质:如果常数t>0,那么该函数(0,$\sqrt{t}$]上是减函数,在[$\sqrt{t}$,+∞)上是增函数.
(1)已知h(x)=x+$\frac{4}{x}$,x∈[1,8],求函数h(x)的最大值和最小值.
(2)已知f(x)=$\frac{4{x}^{2}-12x-3}{2x+1}$,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列的首项为31,若从第16项开始小于1,则此数列的公差d的取值范围是(  )
A.(-∞,-2)B.[-$\frac{15}{7}$,-2)C.(-2,+∞)D.(-$\frac{15}{7}$,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系中xOy中,设P为圆(x-2)2+(y-1)2=1上的任意一点,则x2+y2的最大值是6+2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案