精英家教网 > 高中数学 > 题目详情
(1)求极坐标方程ρ2cos2θ=16的直角坐标方程.
(2)求直角坐标方程y2=12x的极坐标方程.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:利用x=ρcosθ,y=ρsinθ即可实现极坐标与直角坐标的互化.
解答: 解:(1)极坐标方程ρ2cos2θ=16化为ρ2(cos2θ-sin2θ)=16,∴x2-y2=16,即为直角坐标方程;
(2)由直角坐标方程y2=12x可得(ρsinθ)2=12ρcosθ,化为ρsin2θ=12cosθ,即为极坐标方程.
点评:本题考查了极坐标方程与直角坐标方程的互化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某种汽车购车时费用为10万元,每年保险、汽油等费用为0.9万元;汽车的维修费用各年为:第一年0.2万元,以后每年以0.2万元的增量逐年递增.
(1)写出该种汽车使用n年后总费用Sn的表达式
(2)问这种汽车使用多少年报废最合算(平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)图象的最小正周期是π.
(1)求ω;
(2)求函数y=f(x)的单调增区间;
(3)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于D.E,F分别为弦AB与弦AC上的点,B,E,F,C四点共圆,且BC•AE=DC•AF.
(1)证明:CA是△ABC外接圆的直径;
(2)若DB=BE=EA,求过B,E,F,C四点的圆的半径与△ABC外接圆半径的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点M(1,
3
2
),且右焦点为F2(1,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P(x0,y0)是椭圆C上的一个动点,过F2作与PF2垂直的直线l2,直线l2与直线l1
x0x
a2
+
y0y
b2
=0相交于点Q,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点与抛物线x2=4
2
y的焦点重合,F1,F2分布是椭圆的左、右焦点,离心率e=
3
3
,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当
OM
ON
=-1时,求直线l的方程;
(Ⅲ)若AB是椭圆C经过原点O的弦,MN∥AB,是否存在常数λ,使|AB|=λ
|MN|
?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+cosx,a∈R;
(Ⅰ)求在点(
π
2
,1)的切线方程;
(Ⅱ)若a=f′(
π
2
),求f(
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,满足Sn=an+1-2n+1+1,(n∈N*),且a1=1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
an+1-1
an+1+2
,数列{bn}的前n项和为Tn,证明:对一切正整数n,都有n-
3
2
Tn<n-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3 x2-2x的值域是
 

查看答案和解析>>

同步练习册答案