精英家教网 > 高中数学 > 题目详情
已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线l:x+y-1=0上.
(1)求圆心为C的圆的标准方程;
(2)设点P在圆C上,点Q在直线x-y+5=0上,求PQ的最小值;
(3)若直线kx-y+5=0被圆C所截得弦长为8,求k的值.
考点:直线与圆相交的性质,圆的标准方程
专题:计算题,直线与圆
分析:(1)根据题意设出圆的标准方程为(x-a)2+(y-b)2=r2,得到圆心坐标为(a,b),半径为r,将A与B坐标代入圆方程,消去r得到关于a与b的方程,再将圆心坐标代入x+y-1=0中得到关于a与b的方程,联立求出a与b的值,确定出r的值,即可确定出圆的方程.
(2)由题意求出圆心到直线的距离,减去圆的半径即可得到|PQ|的最小值.
(3)由圆的半径,弦长,利用垂径定理及勾股定理求出弦心距d的值,再由圆心C坐标和直线kx-y+5=0,利用点到直线的距离公式列出关于k的方程,求出方程的解即可得到k的值.
解答: (1)解:设圆的标准方程为(x-a)2+(y-b)2=r2,得到圆心坐标为(a,b),半径为r,
将A与B坐标代入圆方程得:(-1-a)2+(1-b)2=r2,(-2-a)2+(-2-b)2=r2
消去r,整理得:a+3b+3=0①,
将圆心坐标代入x+y-1=0得:a+b-1=0②,
联立①②解得:a=3,b=-2,r2=(-1-3)2+(1+2)2=25,
则圆C的标准方程为(x-3)2+(y+2)2=25.
(2)解:由于圆C:(x-3)2+(y+2)2=25,
则C(3,-2),半径r为:5,
由于C(3,-2)到直线l:x-y+5=0的距离为:
|3+2+5|
2
=5
2

故|PQ|的最小值是:5
2
-5

(3)解:∵圆C半径为5,弦长为8,
∴圆心到直线kx-y+5=0的距离d=
52-42
=3,即
|3k+7|
k2+1
=3,
解得:k=-
20
21
点评:本题考查了直线与圆的位置关系,涉及的知识有:二元一次方程组的解法,以及圆的标准方程,求出圆心坐标与半径是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(a为实数).
(Ⅰ)当a=5时,求函数y=g(x)在x=1处的切线方程;
(Ⅱ)求f(x)在区间[t,t+2](t>0)上的最小值;
(Ⅲ)若存在两不等实根x1,x2∈[
1
e
,e],使方程g(x)=2exf(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx,g(x)=
a
x
(a>0)

(1)当a=2时,求h(x)=f(x)+g(x)的最小值;
(2)若h(x)=f(x)+g(x),在(0,+∞)上有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为[0,1].
(1)求g(x)的解析式;
(2)求g(x)的值域;
(3)是否存在实数t,若对任意的x1∈[0,1],都存在x2∈[t,t+1]使得g(x1)=f(x2)-3成立,若存在求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在[-1,1]上的奇函数,且当x∈(0,1]时,f(x)=
2x
4x+1

(1)试用函数单调性定义证明:f(x)在(0,1]上是减函数;
(2)求函数f(x)在[-1,1]上的解析式;
(3)要使方程f(x)=x+b在区间[-1,1]上恒有实数解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,g(x)=x-1.
(1)若不等式f(x)>bg(x)对任意的实数x恒成立,求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(3-2x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N+),a2=60.
(1)求n的值;
(2)求-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足
|x-y|≤1
4≤x+2y
,则
y
x+1
的取值范围是
 

查看答案和解析>>

同步练习册答案