精英家教网 > 高中数学 > 题目详情
已知(3-2x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N+),a2=60.
(1)求n的值;
(2)求-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
的值.
考点:二项式定理的应用
专题:综合题,二项式定理
分析:(1)以x+1代替x,可得(1-2x)n=a0+a1x+a2x2+…+anxn,根据a2=60,即可求出n的值;
(2)写出展开式的通项,-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
=
C
1
6
+
C
2
6
+…+
C
6
6
,即可得出结论.
解答: 解:(1)以x+1代替x,可得(1-2x)n=a0+a1x+a2x2+…+anxn
∵a2=60,
C
2
n
•(-2)2
=60,
∴n(n-1)=30,
∴n=6;
(2)展开式的通项为Tr+1=
C
r
6
•(-2x)r

∴an=
C
n
6
•(-2)n

∴-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
=
C
1
6
+
C
2
6
+…+
C
6
6
=26-1=63.
点评:本题考查二项式定理的应用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线l:x+y-1=0上.
(1)求圆心为C的圆的标准方程;
(2)设点P在圆C上,点Q在直线x-y+5=0上,求PQ的最小值;
(3)若直线kx-y+5=0被圆C所截得弦长为8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且同时满足以下三个条件:①f(1)=1;②对任意的x∈[0,1],都有f(x)≥0; ③当x≥0,y≥0,x+y≤1时总有f(x+y)≥f(x)+f(y).
(1)试求f(0)的值;
(2)求f(x)的最大值;
(3)证明:当x∈[
1
4
,1]
时,恒有2x≥f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;
(Ⅱ)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

?x∈R,不等式4mx2-2mx-1<0恒成立, m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的图象与y=ln
x
-1的图象关于y=x对称,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,则
lim
n→∞
3n+1-2n+1
3n+2n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的有
 

①若点P(x0,y0)是抛物线y2=2px上一点,则该点到抛物线的焦点F的距离是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的图形是圆;
③设定圆O上有一动点A,圆O内一定点M,AM的垂直平分线与半径OA的交点为点P,则P的轨迹为一椭圆;
④某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=13;
⑤双曲线
y2
49
-
x2
25
=-1的渐近线方程是y=±
5
7
x.

查看答案和解析>>

同步练习册答案