精英家教网 > 高中数学 > 题目详情
若关于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,求a的范围.
考点:一元二次方程的根的分布与系数的关系
专题:计算题,函数的性质及应用
分析:设f(x)=x2+2ax-2a-2,则关于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,可得f(0)f(1)≤0,即可求出a的范围.
解答: 解:设f(x)=x2+2ax-2a-2,则f(1)<0,
∵关于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,
∴f(0)≥0,
∴-2a-2≥0
∴a≤-1.
点评:本题考查一元二次方程的根的分布,考查函数思想的运用,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把6个人平均分成两组,再从各组中分别选出正组长1名和副组长1名,则不同的选法种数是(  )
A、720B、360
C、120D、60

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,双曲线
x2
a2
-
y2
b2
=1的离心率为e1,双曲线
y2
b2
-
x2
a2
=1的离心率为e2,证明e12+e22=e12e22

查看答案和解析>>

科目:高中数学 来源: 题型:

某网络营销部门随机抽查了某市200名网友在2013年11月11日的网购金额,所得数据如下表:
网购金额(单位:千元) 人数 频率
(0,1] 16 0.08
(1,2] 24 0.12
(2,3] x p
(3,4] y q
(4,5] 16 0.08
(5,6] 14 0.07
合计 200 1.00
已知网购金额不超过3千元与超过3千元的人数比恰为3:2
(1)试确定x,y,p,q的值,并补全频率分布直方图(如图).
(2)该营销部门为了了解该市网友的购物体验,从这200网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人中进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线方程为2x2-y2=2,其弦PQ的长是实轴长的2倍,若弦PQ所在的直线l过点A(
3
,0),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(a为实数).
(Ⅰ)当a=5时,求函数y=g(x)在x=1处的切线方程;
(Ⅱ)求f(x)在区间[t,t+2](t>0)上的最小值;
(Ⅲ)若存在两不等实根x1,x2∈[
1
e
,e],使方程g(x)=2exf(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx,g(x)=
a
x
(a>0)

(1)当a=2时,求h(x)=f(x)+g(x)的最小值;
(2)若h(x)=f(x)+g(x),在(0,+∞)上有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(3-2x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N+),a2=60.
(1)求n的值;
(2)求-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
的值.

查看答案和解析>>

同步练习册答案