精英家教网 > 高中数学 > 题目详情
设a>0,b>0,双曲线
x2
a2
-
y2
b2
=1的离心率为e1,双曲线
y2
b2
-
x2
a2
=1的离心率为e2,证明e12+e22=e12e22
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知条件推导出e1=
c
a
e2=
c
b
,再分求出e12+e22和e12e22,由此能证明e12+e22=e12e22
解答: 解:∵双曲线
x2
a2
-
y2
b2
=1的离心率为e1
双曲线
y2
b2
-
x2
a2
=1的离心率为e2
e1=
c
a
e2=
c
b

∵e12+e22=
c2
a2
+
c2
b2
=
c2(a2+b2)
a2b2
=
c4
a2b2

e12e22=
c2
a2
c2
b2
=
c4
a2b2

∴e12+e22=e12e22
点评:本题考查双曲线的离心率的求法及应用,是基础题,解题时要熟练掌握离心率的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,梯形ABCD中,E是DC延长线上一点,AE分别交BD于G,交BC于F.则下列结论:
EC
CD
=
EF
AF
;②
FG
AG
=
BG
GD
;③
AE
AG
=
BD
DG
;④
AF
CD
=
AE
DE
,其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲箱装有a个白球2个黑球,乙箱装有2个白球1个黑球,这些球除颜色外完全相同.现从甲箱中随机摸两球,乙箱中随机模一球,若恰好摸出三个黑球的概率为
1
18

(Ⅰ)求a的值;
(Ⅱ)记甲箱摸出x个黑球,乙箱摸出y个黑球,ξ=|x-y|.求ξ的分布列及Eξ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积;
(2)在△ABC中,满足:
AB
AC
,|
AB
|=|
AC
|,求向量
AB
+2
AC
与向量2
AB
+
AC
的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数
(1)求a的值
(2)讨论关于x的方程
lnx
f(x)
=x2-2ex+m
的根的函数
(3)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x+y+z=0,求证:6(x3+y3+z32≤(x2+y2+z23

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在区间[0,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0有
f(a)+f(b)
a+b
>0
恒成立.
(1)判断f(x)在[-1,1]上是增函数还是减函数,并证明你的结论;
(2)若f(x)≤m2-2am+1,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且同时满足以下三个条件:①f(1)=1;②对任意的x∈[0,1],都有f(x)≥0; ③当x≥0,y≥0,x+y≤1时总有f(x+y)≥f(x)+f(y).
(1)试求f(0)的值;
(2)求f(x)的最大值;
(3)证明:当x∈[
1
4
,1]
时,恒有2x≥f(x).

查看答案和解析>>

同步练习册答案