精英家教网 > 高中数学 > 题目详情
某网络营销部门随机抽查了某市200名网友在2013年11月11日的网购金额,所得数据如下表:
网购金额(单位:千元) 人数 频率
(0,1] 16 0.08
(1,2] 24 0.12
(2,3] x p
(3,4] y q
(4,5] 16 0.08
(5,6] 14 0.07
合计 200 1.00
已知网购金额不超过3千元与超过3千元的人数比恰为3:2
(1)试确定x,y,p,q的值,并补全频率分布直方图(如图).
(2)该营销部门为了了解该市网友的购物体验,从这200网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人中进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(1)由网友和为200,网购金额不超过3千元与超过3千元的人数比恰为3:2列方程组求解x,y的值,则p,q可求,进一步补全频率分布直方图;
(2)分别求出从网购金额在(1,2]和(4,5]的两个群体中的人数并标记,然后用枚举法列出从5人中随机选取2人的所有不同方法数,查出2人来自不同群体的方法数,最后由古典概型概率计算公式求解.
解答: 解:(1)根据题意有:
16+24+x+y+16+16=200
16+24+x
y+16+16
=
3
2
,解得
x=80
y=50

∴P=0.4,q=0.25.
补全频率分布直方图如图,

(2)根据题意,网购金额在(1,2]内的人数为
24
24+16
×5=3
(人),记为:a,b,c.
网购金额在(4,5]内的人数为
16
24+16
×5=2
(人),记为:A,B.
则从这5人中随机选取2人的选法为:(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),
(b,B),(c,A),(c,B),(A,B)共10种.
记2人来自不同群体的事件为M,则M中含有(a,A),(a,B),(b,A),(b,B),(c,A),(c,B)共6种.
∴P(M)=
6
10
=
3
5
点评:本题主要考查频率分布直方图,分层抽样,古典概型等基础知识,考查学生数据处理和数据分析、运算求解能力和应用知识、或然与必然思想方法的理解程度.是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“a=2”是“关于x的不等式|x+1|+|x+2|<a的解集非空”的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2g(x)=x-
1
4
+
2-x

(Ⅰ)求函数f(x)的最小值;
(Ⅱ)对于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数
(1)求a的值
(2)讨论关于x的方程
lnx
f(x)
=x2-2ex+m
的根的函数
(3)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)上的一点M(3,y0)到焦点F的距离等于4.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若过点(4,0)的直线l与抛物线C相交于A,B两点,求△ABO面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+3.
(1)当x>0时,方程f(x)=-1有解,求a的最小值;
(2)当x∈[0,4]时,不等式f(x)≥a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=x+b与抛物线C:x2=4y相切于点A.
(Ⅰ) 求实数b的值,及点A的坐标;
(Ⅱ) 求过点B(0,-1)的抛物线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;
(Ⅱ)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率.

查看答案和解析>>

同步练习册答案