精英家教网 > 高中数学 > 题目详情
2.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=2,ω=2,F($\frac{π}{3}$)=1.

分析 根据图象由最值确定A=2,由周期确定ω=2π÷T=2,得到f(x)=2sin(2x+φ),然后以点($\frac{π}{6}$,2)代人求φ.

解答 解:由图象易知A=2,$\frac{3}{4}$T=$\frac{11}{12}$π-$\frac{π}{6}$,
∴T=π,ω=$\frac{2π}{π}$=2,
∴f(x)=2sin(2x+φ),由f($\frac{π}{6}$)=2sin(2×$\frac{π}{6}$+φ=2,且0<φ<π,
∴φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$),
∴f($\frac{π}{3}$)=2sin(2×$\frac{π}{3}$+$\frac{π}{6}$)=1,
故答案为:2;2;1.

点评 本题主要考查由部分图象怎样求函数的解析式问题及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若正方形ABCD的边长为3,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,$\overrightarrow{BF}$=2$\overrightarrow{FC}$,则$\overrightarrow{BE}$•$\overrightarrow{DF}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{1}{x+a}$+2lnx,其中a≠0,a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设g(x)=$\frac{{x}^{2}+x-1}{{e}^{x}}$+m,求证:当a=-1,x∈(1,+∞)时,对任意的m<$\frac{8}{5}$,总有f(x)>g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{alnx+b}{{e}^{x}}$(e是自然对数的底数,其中常数a,n满足a>b,且a+b=1,函数y=f(x)的图象在点(1,f(1))处的切线斜率是2-$\frac{1}{a}$.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域OAB内建两个圆形花坛,该扇形的圆心角为变量2θ(0<2θ<π),其中半径较大的花坛⊙P内切于该扇形,半径较小的花坛⊙Q与⊙P外切,且与OA、OB相切.
(1)求⊙P的半径(用θ表示);
(2)求⊙Q的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5.(1)求数列{an}的通项公式;
(2)证明:对一切n∈N*,令bn=an•an+1,都有$\frac{1}{4}$≤$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD为平行四边形,AB=5,AD=4,BD=3,将△BCD沿着BD翻折到平面BC1D处(不与平面ABCD重合),E,F分别为对边AB,C1D的中点,
(Ⅰ)求证:EF⊥BD;
(Ⅱ)若异面直线EF,BC1所成的角为30°,求二面角C1-AB-D的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,设F为抛物线y2=2px(p>0)的焦点,P是抛物线上一定点,其坐为(x0,y0)(x0≠0),Q为线段OF的垂直平分线上一点,且点Q到抛物线的准线l的距离为$\frac{3}{2}$.
(1)求抛物线的方程;
(2)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值-$\frac{2}{{y}_{0}}$,求证:直线PA、PB的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,角A,B,C所对的边分别为a,b,c,且b+c=8,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,则△ABC面积的最大值为(  )
A.4B.4$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案