精英家教网 > 高中数学 > 题目详情
17.如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域OAB内建两个圆形花坛,该扇形的圆心角为变量2θ(0<2θ<π),其中半径较大的花坛⊙P内切于该扇形,半径较小的花坛⊙Q与⊙P外切,且与OA、OB相切.
(1)求⊙P的半径(用θ表示);
(2)求⊙Q的半径的最大值.

分析 (1)设⊙P切OA于M,⊙Q切OA于N,记⊙P、⊙Q的半径分别为rP、rQ.可得|OP|=80-rP,由此求得rP的解析式.
(2)由|PQ|=rP+rQ,求得rQ=$\frac{80sinθ(1-sinθ)}{{(1+sinθ)}^{2}}$ (0<θ<$\frac{π}{2}$).令t=1+sinθ∈(1,2),求得rQ=80(-1-$\frac{2}{{t}^{2}}$+$\frac{3}{t}$),再利用二次函数的性质求得它的最大值.

解答 解:(1)设⊙P切OA于M,连PM,⊙Q切OA于N,连QN,
记⊙P、⊙Q的半径分别为rP、rQ
∵⊙P与⊙O内切,∴|OP|=80-rP
∴$\frac{{r}_{p}}{sinθ}$+rP=80,∴rP=$\frac{80sinθ}{1+sinθ}$  (0<θ<$\frac{π}{2}$).
(2)∵|PQ|=rP+rQ,∴|OP|-|OQ|=$\frac{{r}_{p}}{sinθ}$-$\frac{{r}_{Q}}{sinθ}$=rP+rQ
∴rQ=$\frac{80sinθ(1-sinθ)}{{(1+sinθ)}^{2}}$  (0<θ<$\frac{π}{2}$).
令t=1+sinθ∈(1,2),∴rQ=80•$\frac{(t-1)(2-t)}{{t}^{2}}$=80(-1-$\frac{2}{{t}^{2}}$+$\frac{3}{t}$),
令m=$\frac{1}{t}$∈($\frac{1}{2}$,1),rQ=80(-2m2+3m-1),∴m=$\frac{3}{4}$时,有最大值10.

点评 本题主要考查直线和圆的位置关系,三角恒等变换,正弦函数的定义域和值域,求三角函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.现有下列命题,其中正确的命题的序号为(  )
①命题“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤-1},则A∩(∁RB)=A;
③直线(m+2)x+3my+1=0与(m-2)x+(m+2)y-3=0互相垂直的条件为m=-2;
④如果抛物线y=ax2的准线方程为y=1,则a=-$\frac{1}{4}$.
A.②④B.①②C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数①f(x)=x+1;②f(x)=2x-2;③f(x)=$\frac{1}{x}$;④f(x)=lnx;⑤f(x)=cosx;其中对于f(x)定义域内的任意x1,都存在x2,使得f(x1)f(x2)=-x1x2成立的函数是(  )
A.①③B.②⑤C.③⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\frac{\frac{1}{2}-si{n}^{2}25°}{cos20°•cos70°}$=(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=2sinθ\end{array}$(θ为参数),点P在曲线C上,以Ox为极轴建立极坐标系,点Q的极坐标为($\sqrt{3}$,$\frac{π}{2}$),则P,Q两点距离的最大值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=2,ω=2,F($\frac{π}{3}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线l1:ax+2y-1=0,直线l2:x+by-3=0,且l1的倾斜角为$\frac{π}{4}$,则a=-2;若l1⊥l2,则b=1;若l1∥l2,则两直线间的距离为$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆C经过点(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C上的动点P(x0,y0)(x0y0≠0),其中点P在x轴上的射影为点N,点P关于原点O的对称点为点Q,求△PQN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z1=2+i,z2=m+i,若z1•z2是纯虚数,则m=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案