精英家教网 > 高中数学 > 题目详情
19.已知函数y=2cos(ωx+φ)(ω>0,0<φ<π)满足f(-x)=-f(x),其图象与直线y=0的某两个交点的横坐标分别为x1、x2,|x1-x2|的最小值为π,则(  )
A.ω=2,φ=$\frac{π}{4}$B.ω=2,φ=$\frac{π}{2}$C.ω=1,φ=$\frac{π}{2}$D.ω=1,φ=$\frac{π}{4}$

分析 由y=2cos(ωx+φ)是偶函数,结合所给的选项可得 φ=$\frac{π}{2}$.再由函数的周期为π,即$\frac{2π}{ω}$=2π,求得ω=1,从而得出结论.

解答 解:∵函数y=2cos(ωx+φ)(ω>0,0<φ<π),满足f(-x)=-f(x),
∴y=2cos(ωx+φ)为奇函数,结合所给的选项可得φ=$\frac{π}{2}$.又其图象与直线y=0的某两个交点的横坐标为x1,x2,|x1,-x2|的最小值为π,
由函数的图象和性质知,f(x)的最小正周期是2π,即T=$\frac{2π}{ω}$=2π,
∴ω=1.
故选:C.

点评 本题主要考查了三角函数的周期性及其求法,余弦函数的图象与性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设n?N+,则5${C}_{n}^{1}$+52${C}_{n}^{2}$+53${C}_{n}^{3}$+…+5n${C}_{n}^{n}$除以7的余数为(  )
A.0或5B.1或3C.4或6D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=log3x+$\frac{1}{{{{log}_3}x}}$-1的值域是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3]∪[1,+∞)C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦点在x轴上的椭圆”,命题q:“方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k}$=1表示双曲线”.
若“p或q”是真命题,“p且q”是假命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log2(sin($\frac{π}{3}$x+$\frac{π}{3}$))
(1)求函数的定义域与单调递减区间;
(2)令$h(x)=sin(\frac{π}{3}x+\frac{π}{3})$,求h(1)+h(3)+h(5)+h(7)+…+h(2013)+h(2015)的值;
(3)g(x)=4f(x)+2f(x)+1,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设命题p:函数f(x)=(a-$\frac{3}{2}$)x是R上的减函数,命题q:函数f(x)=x2-4x+3在[a,4]上递增.若“p且q”为假命题,“p或q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1e2+1的取值范围是($\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解.若p∧q是假命题,¬p也是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2-x-2.求:
(1)f(x)的值域;
(2)f(x)的零点;
(3)f(x)<0时x的取值范围.

查看答案和解析>>

同步练习册答案