精英家教网 > 高中数学 > 题目详情
函数y=f(x)的图象经过点(2,1),则y=f(x+3)的反函数的图象必过定点(  )
A、(1,2)
B、(2,-1)
C、(1,-1)
D、(2,-2)
考点:反函数
专题:函数的性质及应用
分析:由已知得y=f(x+3)的图象经过点(-1,1),从而y=f(x+3)的反函数的图象必过定点(1,-1).
解答: 解:∵函数y=f(x)的图象经过点(2,1),
∴y=f(x+3)的图象经过点(-1,1),
∴y=f(x+3)的反函数的图象必过定点(1,-1).
故选:C.
点评:本题考查反函数的性质的合理运用,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,M是正方形ABCD的中心,N是棱CC1(包括端点)上的动点,现给出以下命题:
①对于任意的点N,都有MN⊥B1D1
②存在点N,使得MN⊥平面A1BD;
③存在点N,使得异面直线MN和A1B1所成角的余弦值是
6
3

④对于任意的点N,三棱锥B-MND1的体积为定值.
其中正确命题的编号是
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(1)=1,且f(x)的导数f′(x)在R上恒有f′(x)<
1
2
,则不等式f(x)<
1
2
x+
1
2
的解集为(  )
A、(1,+∞)
B、(-∞,-1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(6+x-x2)的定义域是(  )
A、{x|x<-2,或x>3}
B、{x|-2<x<3}
C、{x|2<x<3}
D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
3
+
y2
b2
=1(b>0)的左、右焦点分别为F1,F2,直线AB过右焦点F2,和椭圆C交于A,B两点,且满足
AF1
=2
F2B
,∠F1AB=90°,则椭圆C的离心率为(  )
A、
3
3
B、
5
3
C、
30
6
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元 (不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费(  )
A、1.00元
B、0.90元
C、1.20元
D、0.80元

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤3},集合B={x|m-2≤x≤m+2}.
(1)若B⊆A,求m值;
(2)若A⊆∁RB,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB∥平面ACD,DE∥AB,△ACD是正三角形,F是CD的中点,AD=4,DE=2AB=3.
(1)求证:AF∥平面BCE;
(2)求四棱锥C-ABED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1的长轴为线段AB,点M是椭圆上不同于A,B的任意一点,
(1)设直线MA,MB的斜率分别为k1,k2,求证:k1k2为定值;
(2)若直线MA,MB与直线x=3分别相交于C,D两点,求证:以CD为直径的圆过定点,并求出定点的坐标.

查看答案和解析>>

同步练习册答案