精英家教网 > 高中数学 > 题目详情
7.设函数f′(x)是偶函数f(x)的导函数,当x≠0时,恒有xf′(x)>0,记a=f(log0.53),b=f(log25),c=f(log32),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

分析 当x≠0时,有xf′(x)>0,可得x>0时,f′(x)>0,函数f(x)在(0,+∞)单调递增.又函数f(x)为R上的偶函数,可得a=f(log0.53)=f(log23),利用对数函数的单调性及其f(x)的单调性即可得出.

解答 解:∵当x≠0时,有xf′(x)>0,
∴x>0时,f′(x)>0,函数f(x)在(0,+∞)单调递增.
又函数f(x)为R上的偶函数,
∴a=f(log0.53)=f(log23),
∵0<log32<log23<log25,
∴f(log32)<f(log23)<f(log25),
∴c<a<b.
故选:D.

点评 本题考查了利用导数研究函数的单调性、函数的奇偶性与单调性的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某一中学生心理咨询中心服务电话接通率为$\frac{3}{4}$,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,则3个人中有2个人成功咨询的概率是(  )
A.$\frac{1}{64}$B.$\frac{3}{64}$C.$\frac{27}{64}$D.$\frac{9}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设$\overrightarrow{OA}=(2,-1),\overrightarrow{OB}=(3,1),\overrightarrow{OC}=(m,3)$.
(1)当m=2时,将$\overrightarrow{OC}$用$\overrightarrow{OA}$和$\overrightarrow{OB}$表示;
(2)若$\overrightarrow{AB}⊥\overrightarrow{BC}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z满足z•(1+i)=2i(i是虚数单位),则|z|=(  )
A.$\sqrt{2}$B.2C.1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别为a、b、c,已知asinC=6csinB.
(1)求$\frac{a}{b}$的值;
(2)若b=1,c=$\sqrt{26}$,求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若等差数列{an}满足a1+a3=-2,a2+a4=10,则a5+a7的值是(  )
A.-22B.22C.-46D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知小王定点投篮命中的概率是$\frac{1}{3}$,若他连续投篮3次,则恰有1次投中的概率是(  )
A.$\frac{4}{9}$B.$\frac{2}{9}$C.$\frac{4}{27}$D.$\frac{2}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sin($\frac{π}{8}$+α)=$\frac{3}{4}$,则cos($\frac{3π}{8}$-α)=(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{\sqrt{7}}{4}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),$\overrightarrow c$=({1,0).
(1)求向量$\overrightarrow b$+$\overrightarrow c$的长度的最大值;
(2)设α=$\frac{π}{4}$,$\frac{17π}{12}$<β<$\frac{7π}{4}$,且$\overrightarrow a$⊥(${\overrightarrow b$-$\frac{{3\sqrt{2}}}{5}$$\overrightarrow c}$),求$\frac{{sin2β-2{{sin}^2}β}}{1+tanβ}$的值.

查看答案和解析>>

同步练习册答案