精英家教网 > 高中数学 > 题目详情
19.已知tan$\frac{θ}{2}$=$\frac{1}{2}$,则$\frac{cos(θ-π)sin(π-θ)}{cos(2π-θ)[sin(θ-\frac{π}{2})+1]}$=-2.

分析 根据诱导公式将所求的式子化简,根据正切函数的半角公式,求得式子的值.

解答 解:原式=$\frac{-cosθsinθ}{cos(-θ)(-cosθ+1)}$
=$\frac{-sinθcosθ}{cosθ(1-cosθ)}$
=-$\frac{sinθ}{1-cosθ}$
=$-\frac{1}{tan\frac{θ}{2}}$
=-2
故答案为:-2

点评 主要考察利用诱导公式化简及正切函数半角公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知△ABC的内角A,B,C所对的边分别为a,b,c,若sinB+sinA=$\frac{\sqrt{3}(sin2A-sin2B)}{2(sinB-sinA)}$
(Ⅰ)求角C的大小;
(Ⅱ)若△ABC为锐角三角形且满足$\frac{m}{tanC}=\frac{1}{tanA}+\frac{1}{tanB}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,矩形ACEF所在的平面与Rt△ABC所在的平面垂直,D是AF的中点,且AC=BC=AD=$\frac{1}{2}$CE.
(1)证明:DE⊥BC;
(2)求多面体BCDFE与四面体BCDF的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直角△ABC的一条直角边长是12$\sqrt{14}$,另外两条边长都是整数,那么,这样的直角三角形有4个,其中斜边长最大是505.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若实数x,y满足x2+y2-2x+2$\sqrt{3}$y+3=0,则x-$\sqrt{3}$y的取值范围是(  )
A.[2,+∞)B.(2,6)C.[2,6]D.[-4,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.投掷两颗均匀骰子,已知点数不同,设两颗骰子点数之和为ξ,求ξ≤6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$为非零向量,且$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$,求证|$\overrightarrow{a}$|=|$\overrightarrow{b}$|?$\overrightarrow{c}$⊥$\overrightarrow{d}$,并解释其几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4cx(其中c=$\sqrt{{a}^{2}+{b}^{2}}$)交于A,B两点,若|AB|=4c,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平行四边形ABCD中,已知AB=3,BC=4,∠ABC=120°,则对角线BD=$\sqrt{13}$;AC=$\sqrt{37}$.

查看答案和解析>>

同步练习册答案