精英家教网 > 高中数学 > 题目详情
6.在平行四边形ABCD中,已知AB=3,BC=4,∠ABC=120°,则对角线BD=$\sqrt{13}$;AC=$\sqrt{37}$.

分析 直接利用余弦定理求解所求对角线的长度即可.

解答 解:平行四边形ABCD中,已知AB=3,BC=4,∠ABC=120°,
则对角线BD=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BCcos60°}$=$\sqrt{9+16-2×3×4×\frac{1}{2}}$=$\sqrt{13}$.
AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BCcoa120°}$=$\sqrt{9+16+2×3×4×\frac{1}{2}}$=$\sqrt{37}$.
故答案为:$\sqrt{13}$;$\sqrt{37}$.

点评 本题考查余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知tan$\frac{θ}{2}$=$\frac{1}{2}$,则$\frac{cos(θ-π)sin(π-θ)}{cos(2π-θ)[sin(θ-\frac{π}{2})+1]}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC中,已知角A,B,C所对的边是a,b,c,则下列说法正确的有②③(写出所有正确命题的编号).
①若a=2,b=2$\sqrt{3}$,A=30°,则B=60°
②若sinA>sinB,则a>b,反之也成立
③若c2sin2B+b2sin2C=2bccosBcosC,则△ABC一定是直角三角形
④若b2=ac且cos(A-C)=$\frac{3}{2}$-cosB,则B=$\frac{π}{3}$或B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了研究数学、物理学习成绩的关联性,某位老师从一次考试中随机抽取30名学生,将数学、物理成绩进行统计,所得数据如表,其中数学成绩在120分以上(含120分)为优秀,物理成绩在80分以上(含80分)为优秀.
编号数学成绩xi物理成绩yi编号数学成绩xi物理成绩yi编号数学成绩xi物理成绩yi
11088211124802112264
21127612136862213682
31307813127832311484
4132911480732412180
5108681513881258852
61408816141912614283
71439217109852712569
8997218100802813590
9106841992732911282
101207720132823012892
(1)根据表格完成下面2×2的列联表:
数学成绩不优秀数学成绩优秀合计
物理成绩不优秀
物理成绩优秀
合计
(2)若这一次考试物理成绩y关于数学成绩x的回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
由图中数据计算成$\overline{x}$=120,$\overline{y}$=80,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=2736,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=8480,若y关于x的回归方程,据此估计,数学成绩每提高10分,物理成绩约提高多少分?(精确到0.1).
附1:独立性检验:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.0500.010
k2.0722.7063.8416.635
附2:若(x1,y1),(x2,y2),…(xn,yn)为样本点,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$为回归直线,
则$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,
AD=4,∠PAD=60°.
(1)若M为PA的中点,求证:DM∥平面PBC;
(2)求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图1,将水平放置且边长为1的正方形ABCD沿对角线BD折叠,使C到C′位置.折叠后三棱锥C′-ABD的俯视图如图2所示,那么其主视图是(  )
A.等边三角形B.直角三角形
C.两腰长都为$\frac{{\sqrt{3}}}{2}$的等腰三角形D.两腰长都为$\frac{{\sqrt{2}}}{2}$的等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线m,n和平面α,m?α,n∥m,那么“n?α”是“m∥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某商品进价为26元,若要求利润不小于30%,则销售价至少为(精确到元)(  )
A.33元B.34元C.35元D.36元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,$\frac{π}{2}$≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么f(2016)=(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.-1D.1

查看答案和解析>>

同步练习册答案