精英家教网 > 高中数学 > 题目详情
双曲线
y2
16
-
x2
m
=1
的离心率e=2,则双曲线的渐近线方程为(  )
A、y=±
x
B、y=±
3
3
x
C、y=±2x
D、y=±
1
2
x
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:双曲线
y2
16
-
x2
m
=1
的离心率e=2,求出m=48,由此能求出双曲线的渐近线方程.
解答: 解:∵双曲线
y2
16
-
x2
m
=1
的离心率e=2,
∴e=
c
a
=
16+m
4
=2

解得m=48,
∴双曲线的渐近线方程为
y2
16
=
x2
48

整理,得y=±
3
3
x

故选:B.
点评:本题考查双曲线的渐近线方程的求法,是基础题,解题时要熟练掌握双曲线的简单性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线y=-2x+a与圆x2+y2=9交于A、B两点.
(1)求证:若a=2
6
,则
OA
OB
=
3
5
是真命题;
(2)写出(1)中的逆命题,并判断其真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知区间[m,n]的长度为n-m(n>m),设集合A=[0,t](t>0),集合B=[a,b](b>a),从集合A到集合B的函数f:x→y=2x+t,若集合B的长度比集合A的长度大5,则实数t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若如图所示的程序框图输出的S是30,则在判断框中M表示的“条件”应该是(  )
A、n≥3B、n≥4
C、n≥5D、n≥6

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{2,3,4,5}中随机抽取一个数a,从集合{1,3,5}中随机抽取一个数b,则向量
m
=(a,b)
与向量
n
=(1,-1)
垂直的概率为(  )
A、
1
6
B、
1
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=
1
2
,则下列结论中错误的是(  )
A、AC⊥BE
B、EF∥平面ABCD
C、三棱锥A-BEF的体积为定值
D、异面直线AE,BF所成角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x2≥4},N={x|x+1≥0},则(∁RM)∩N=(  )
A、{x|-1≤x<2}
B、{x|x<2}
C、{x|-1<x<2}
D、{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,
3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|-|BF2|=
6
2
,求直线AF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,B(-2,0),C(2,0),△ABC的周长为12,动点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P、Q为E上两点,
OP
OQ
=0
,过原点O作直线PQ的垂线,垂足为M,证明|OM|为定值.

查看答案和解析>>

同步练习册答案