| A. | $\frac{1}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{1}{2}$ |
分析 把sin2α代入1-sin2α,利用二倍角的正弦函数公式,以及同角三角函数间基本关系化简,开方即可求出sinα-cosα的值.
解答 解:∵sin2α=$\frac{1}{2}$,
∴1-sin2α=1-2sinαcosα=$\frac{1}{2}$,即sin2α-2sinαcosα+cos2α=$\frac{1}{2}$,
∴(sinα-cosα)2=$\frac{1}{2}$,
∵α∈(0,$\frac{π}{4}$),
∴sinα<cosα,即sinα-cosα<0,
则sinα-cosα=-$\frac{\sqrt{2}}{2}$,
故选:B.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=2•2${\;}^{\frac{n(1+n)}{2}}$ | B. | an=2${\;}^{\frac{n(1+n)}{2}}$ | C. | an=2•2${\;}^{\frac{n(1+n)}{2}}$-1 | D. | an=2n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com