精英家教网 > 高中数学 > 题目详情
5.(1)设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,求角C的值..
(2)如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为$\frac{\sqrt{3}}{2}$km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.

分析 (1)由已知及正弦定理可求b=$\frac{3a}{5}$,c=$\frac{7a}{5}$,利用余弦定理可求cosC=-$\frac{1}{2}$,结合范围C∈(0,180°),可求C.
(2)由已知可求∠CBD,由正弦定理得BC的值,进而求得AC,利用余弦定理可求AB的值.

解答 解:(1)∵b+c=2a,3sin A=5sin B,即3a=5b,
∴b=$\frac{3a}{5}$,c=$\frac{7a}{5}$,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$.
∵C∈(0°,180°),
∴C=120°.
(2)在△BDC中,∠CBD=180°-30°-105°=45°,
由正弦定理得$\frac{BC}{sin30°}$=$\frac{CD}{sin45°}$,
则BC=$\frac{CDsin30°}{sin45°}$=$\frac{\sqrt{6}}{4}$(km).
在△ACD中,∠CAD=180°-60°-60°=60°,
∴△ACD为正三角形.∴AC=CD=$\frac{\sqrt{3}}{2}$(km).
在△ABC中,由余弦定理得:
AB2=AC2+BC2-2AC•BC•cos 45°
=$\frac{3}{4}$+$\frac{6}{16}$-2×$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{6}}{4}$×$\frac{\sqrt{2}}{2}$=$\frac{3}{8}$,
∴AB=$\frac{\sqrt{6}}{4}$(km).

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想、数形结合思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=3Sn+2,n∈N.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{8n}{{a}_{n+1}-{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设ξ服从正态分布N(μ,σ2),则命题
①P(ξ≤x)=P(ξ≥2μ-x)
②P(ξ≤x)+P(ξ≤2μ-x)=1
③P(x1≤ξ≤x2)=P(ξ≤x2)+P(ξ≥2μ-x1
正确的有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线6x-2y-5=0的倾斜角为α,则$\frac{sin(π-α)+cos(-α)}{sin(-α)-cos(π+α)}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,设A(0,b),B(a,0),F1,F2,分别是椭圆的左右焦点,且S${\;}_{△AB{F}_{2}}$=$\frac{\sqrt{3}}{2}$
(1)求椭圆C的方程;
(2)过F1的直线与以F2为焦点,顶点在坐标原点的抛物线交于P,Q两点,设$\overrightarrow{{F}_{1}P}$=λ$\overrightarrow{{F}_{1}Q}$,若λ∈[2,3],求△F2PQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a2=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y=x2+sinxB.y=x2-cosxC.$y={2^x}+\frac{1}{2^x}$D.y=x+sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足an+1-an=1,a1=1,试比较$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2^n}}}}$与$\frac{n+2}{2}(n∈{N^*})$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设点A(2,-3),B(-3,-2),直线l过P(1,1)且与线段AB相交,则l的斜率k的取值范围是(  )
A.{k|k≥$\frac{3}{4}$或k≤-4}B.{k|-4≤k≤$\frac{3}{4}$}C.{k|-$\frac{3}{4}$≤k<4}D.以上都不对

查看答案和解析>>

同步练习册答案