精英家教网 > 高中数学 > 题目详情
9.若函数y=-x3+6x2-m的极大值为12,则实数m等于20.

分析 根据函数的极值是12,对函数求导使得导函数等于0,验证函数在这两个数字左右两边的导函数值,看出在x=4处取得极值,代入得到结果.

解答 解:∵函数y=-x3+6x2-m的极大值为12,
∴y′=-3x2+12x=0,
∴x=0,x=4,
∴函数在(0,4)上单调递增,在(4,+∞)上单调递减,
∴-64+96-m=12,
∴m=20
故答案为:20.

点评 本题考查函数的极值的应用,解题的关键是看出函数在哪一个点取得极值,代入求出结果,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知集合{φ|f(x)=sin[(x-2φ)π]+cos[(x-2φ)π]为奇函数,且|logaφ|<1}的子集个数为4,则a的取值范围为($\frac{8}{13},\frac{5}{8}$)∪($\frac{8}{5},\frac{13}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
(1)求函数f(x)的解析式;
(2)设函数h(x)=log2[n-f(x)],若此函数在定义域范围内不存在零点,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在平面直角坐标系xOy中,将直线y=$\frac{x}{2}$与直线x=1及x轴围成的封闭图形绕x轴旋转一周得到一个圆锥,圆锥的体积V=${∫}_{0}^{1}$π($\frac{x}{2}$)2dx=$\frac{π}{12}$;据此类比,将曲线y=x2(x≥0)与直线y=2及y轴围成的封闭图形绕y旋转一周得到一个旋转体,此旋转体的体积是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率e=$\frac{1}{2}$,椭圆上的点到焦点的最小距离为1.
(1)求椭圆C的标准方程;
(2)是否存在直线l:y=kx+m(k∈R),使其与椭圆C交于A,B两点,且OA⊥OB?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知角α终边经过点P(-3,-4),求sinα,cosα,tanα的值?
(2)已知角α是第二象限角,且$sinα=\frac{3}{5}$,求cosα,tanα的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)},(-\frac{π}{2}<α<\frac{π}{2})$
(Ⅰ)化简f(α).
(Ⅱ)若$sin(α-\frac{π}{6})=-\frac{1}{5}$,求$f(α+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设不等式|2x-1|<1的解集为M,且a∈M,b∈M.
(1)试比较ab+1与a+b的大小.
(2)设max{A}表示数集A中的最大数,且$h=max\{\frac{2}{{\sqrt{a}}},\frac{a+b}{{\sqrt{ab}}},\frac{ab+1}{{\sqrt{b}}}\}$,求证:h>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ln(1+x)-$\frac{2x}{x+2}$,证明:当x>0时,f(x)>0.

查看答案和解析>>

同步练习册答案