精英家教网 > 高中数学 > 题目详情
4.一张考卷中有5道选择题,每道有4个选项,其中只有一个正确的,某学生全凭猜测答这到题.
(1)求恰好猜对3道题的概率;
(2)求一道题也没有猜对的概率.

分析 (1)该生答对每道题的概率都是$\frac{1}{4}$,答错每题的概率都是$\frac{3}{4}$,利用n次独立重复事件中事件A恰好发生k次的概率计算公式能求出恰好猜对3道题的概率.
(2)利用n次独立重复事件中事件A恰好发生k次的概率计算公式能求出一道题也没有猜对的概率.

解答 解:(1)一张考卷中有5道选择题,每道有4个选项,其中只有一个正确的,
某学生全凭猜测答这到题.
则该生答对每道题的概率都是$\frac{1}{4}$,答错每题的概率都是$\frac{3}{4}$,
∴恰好猜对3道题的概率:
P1=${C}_{4}^{3}(\frac{1}{4})^{3}(\frac{3}{4})$=$\frac{3}{64}$.
(2)一道题也没有猜对的概率:
P2=${C}_{4}^{0}(\frac{3}{4})^{4}$=$\frac{81}{256}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意利用n次独立重复事件中事件A恰好发生k次的概率计算公式能求出的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且a1=5,nSn+1-(n+1)Sn=n2+n.
(Ⅰ)求证:数列{$\frac{{S}_{n}}{n}$}为等差数列;
(Ⅱ)若bn=$\frac{1}{(2n+1){a}_{n}}$,判断{bn}的前n项和Tn与$\frac{1}{6}$的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直,△ABC为等边三角形,M为△ABC内部一点,点P在OM的延长线上,且PA=PB.
(Ⅰ)证明:OA=OB;
(Ⅱ)证明:AB⊥OP;
(Ⅲ)若AP:PO:OC=$\sqrt{5}\;:\sqrt{6}$:1,求二面角P-OA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}为1,3,7,15,31,…,2n-1,数列{bn}满足b1=1,bn=an-an-1,则数列$\left\{{\frac{1}{b_n}}\right\}$的前n-1项和Sn-1为2-22-n(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD⊥面ABC,BE∥CD,F为AD的中点.
(1)求证:EF∥面ABC;
(2)求证:面ADE⊥面ACD;
(3)求四棱锥A-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面内,Rt△ABC中,BA⊥CA,有结论BC2=AC2+AB2,空间中,在四面体V-BCD中,VB,VC,VD两两互相垂直,且侧面的3个三角形面积分别记为S1,S2,S3,底面△BCD的面积记为S,类比平面可得到空间四面体的一个结论是$S_{△BCD}^2=S_{△VBC}^2+S_{△VCD}^2+S_{△VDB}^2$$⇒{S^2}=S_1^2+S_2^2+S_3^2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知关于x的方程x2+(a+1)x+a+b+1=0的两个实根分别为一个椭圆,一个双曲线的离心率,则$\frac{b}{a}$的取值范围(  )
A.$(-1,-\frac{1}{2})$B.(-1,0)C.(-2,+∞)D.$(-2,-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=1,且an+1-an=2n,n∈N*,若$\frac{16λ}{1+{a}_{n}}$+19≤3n对任意n∈N*都成立,则实数λ的取值范围为(-∞,-8].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到17个不同的对数值.

查看答案和解析>>

同步练习册答案