精英家教网 > 高中数学 > 题目详情

【题目】椭圆的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,的四个焦点构成的四边形面积是.

(1)求椭圆的方程;

(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点的连线分别与椭圆交于点.

(i)求证:直线斜率之积为常数;

(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

【答案】(1).(2)(i) 见解析(ii).

【解析】

试题(1)椭圆离心率,又,所以,设,则根据题中条件可设,于是根据椭圆的对称性可知,四个焦点构成的四边形为菱形,面积,解得,可以得到椭圆;(2)(i)本问考查圆锥曲线中的定点、定值问题,分析题意,设,而,所以,于是,又因为,代入上式易求;(ii)根据(i)问,可先证明为定值,再证明为定值,于是可以得到为定值,由于,所以可以得为定值.

试题解析:(1)依题意,设,由对称性,四个焦点构成的四边形为菱形,且面积,解得:.

所以椭圆.

(2)(i)设,则.

.

所以:.

直线斜率之积为常数.

(ii)设,则.

所以:,同理:

所以:,由,结合(i)有

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)若直线的极坐标方程为,设的交点为AB,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若曲线的一条切线方程为

(i)求的值;

(ii)若时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点为椭圆的四个顶点(如图),直线过右顶点且垂直于轴.

(1)求该椭圆的标准方程;

(2)上一点(轴上方),直线分别交椭圆于两点,若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;

2)已知点是曲线上的任意一点,又直线上有两点,且,又点的极角为,点的极角为锐角.求:

①点的极角;

面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,,,,底面,,点在棱上,且

(1)证明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图空间几何体中,均为边长为的等边三角形,平面平面,平面平面

1)试在平面内作一条直线,使得直线上任意一点的连线均与平面平行,并给出详细证明;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线在第一象限的交点为,椭圆的左、右焦点分别为,其中也是抛物线的焦点,且.

1)求椭圆的方程;

2)过的直线(不与轴重合)交椭圆两点,点为椭圆的左顶点,直线分别交直线于点,求证:为定值.

查看答案和解析>>

同步练习册答案