精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=
6
,M是CC1的中点.
(1)求证:A1B⊥AM;
(2)求二面角B-AM-C的平面角的大小.
考点:用空间向量求平面间的夹角
专题:空间角,空间向量及应用
分析:(1)以C为原点,CB,CA,CC1所在直线为x,y,z轴,建立空间直角坐标系,由此利用向量法能证明A1B⊥AM.
(2)求出平面AMC的一个法向量和平面BAM的法向量,由此利用向量法能求出二面角B-AM-C的平面角的大小.
解答: (1)证明:以C为原点,CB,CA,CC1所在直线为x,y,z轴,
建立空间直角坐标系,
则B(1,0,0),A(0,
3
,0),A1(0,
3
6
)

M(0,0,
6
2
),
A1B
=(1,-
3
,-
6
),
AM
=(0,-
3
6
2
),
A1B
AM
=0+3-3=0,
∴A1B⊥AM.
(2)解:∵ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC,
又BC?平面ABC,∴CC1⊥BC,
∵∠ACB=90°,即BC⊥AC,
又AC∩CC1=C,∴BC⊥平面ACC1,即BC⊥平面AMC,
CB1
=(1,0,0)是平面AMC的一个法向量,
n
=(x,y,z)是平面BAM的法向量,
BA
=(-1,
3
,0),
BM
=(-1,0,
6
2
),
n
BA
=-x+
3
y=0
n
BM
=-x+
6
2
z=0

取z=2,得
n
=(
6
2
,2
),
∴cos<
CB
n
>=
CB
n
|
CB
|•|
n
|
=
2
2

∴二面角B-AM-C的平面角的大小为45°.
点评:本题考查异面直线垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意空间中线线、线面、面面间的位置关系和性质的合理运用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(π+α)=-
3
5
,π<α<2π,求sin(α-3π)+cos(α-π)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,EA,EC是以AB为直径的半圆的切线,AE与BC的延长线交于点F,过点C作CD⊥AB交AB于D,交BE于H.
(1)证明:E是AF的中点;
(2)若∠F=30°,AB=2,求CH的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

要建造一个长方形的仓库,其内部的高为3m,长与宽的和为20m,则仓库容积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,
点M是棱PC的中点,AM⊥平面PBD
(1)求四棱锥P-ABCD的体积;
(2)求平面PAD与平面AMD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一根长为5cm,底面半径为0.5cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F,直线l:y=3与C交于A、B两点,l与y轴交于点N,且∠AFB=120°.
(1)求抛物线C的方程;
(2)当0<p<6时,设C在点Q处的切线与直线l、x轴依次交于M、D两点,以MN为直径作圆G,过D作圆G的切线,切点为H,试探究;当点Q在C上移动(Q与原点不重合)时,线段DH的长度是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1,x2是方程ax2+bx+c=0的两根,且满足1≤x1<x2≤2,a,b,c∈Z,则当正整数a取得最小值时,b+c=(  )
A、-5B、-4C、-1D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则向量
a
b
的夹角是(  )
A、90°B、120°
C、135°D、150°

查看答案和解析>>

同步练习册答案