精英家教网 > 高中数学 > 题目详情
已知平面内有O、A、B、C四点,其中A、B、C三点共线,且
OC
=x
OA
+y
OB
,则x+y=
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用向量共线的充要条件即可得到结论.
解答: 解:∵A、B、C三点共线,
∴存在m使
AC
=m
AB

OC
-
OA
=m(
OB
-
OA
),
OC
=(1-m)
OA
+m
OB

OC
=x
OA
+y
OB

∴x=1-m,y=m,则x+y=1-m+m=1,
故答案为:1
点评:本题主要考查平面向量的基本定理,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,c>0,a2+b2=c2,求证:n≥3(n∈N+)时,an+bn<cn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正方体ABCD-A1B1C1D1中,E,F,G,H分别为CC1,C1D1,D1D,CD的中点,N是BC的中点,M在四边形EFGH上以及其内部运动,若MN∥平面A1BD,则M的轨迹的长度是(  )
A、
2
B、2
C、π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果圆的方程为x2+y2+kx+2y+k2=0,则当圆面积最大时,圆心为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,把等腰直角三角形ABC沿斜边AB旋转至△ABD的位置,使CD=AC,求证:平面ABD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是椭圆
x2
25
+
y2
16
=1
的左焦点,且椭圆上有2011个不同的点Pi(xi,yi)(i=1,2,3,…2011),线段|FP1|,|FP2|,…|FP2011|成等差数列,若|FP1|=2,|FP2011|=8,则点P2010的横坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知a,b都是正数,且
a+1
b+1
a
b
,则a<b;
②当x∈(1,+∞)时,函数y=x3,y=x
1
2
的图象都在y=x的上方;
③命题“?x∈R,使得x2-2x+1<0”的否定是真命题;
④把y=3sin(2x+
π
3
)
的图象向右平移
π
3
得y=3sin2x图象;
⑤“x≤1,且y≤1”是“x+y≤2”的充要条件.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},圆C1:x2+y2-2anx+2an+1y-1=0和圆C2:x2+y2+2x+2y-2=0.若圆C1与C2交于A、B两点,且AB平分圆C2的周长.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若a1=-3,求圆C1被直线x+2y+2=0截得弦长最小时圆C1的方程.
(Ⅲ)若圆C3为(Ⅱ)中求出的圆C1的同心圆,且半径为2.设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C2和C3相交,且直线l1被圆C2截得的弦长与直线l2被圆C3截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,-1),
b
=(-1,2),
p
=k
a
+
b
q
=
a
-k
b
,若
p
q
,则k=
 

查看答案和解析>>

同步练习册答案