精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x+sin2x.给出以下四个命题:
①函数f(x)的图象关于坐标原点对称;
②?x>0,不等式f(x)<3x恒成立;
③?k∈R,使方程f(x)=k没有的实数根;
④若数列{an}是公差为$\frac{π}{3}$的等差数列,且f(al)+f(a2)+f(a3)=3π,则a2=π.
其中的正确命题有①②④.(写出所有正确命题的序号)

分析 ①根据奇函数的性质可直接判断;
②构造函数,利用导函数判断函数的单调性,求出最值即可;
③根据函数的连续性和值域可判断;
④根据函数表达式和题意可判断.

解答 解:①函数f(x)为奇函数,故图象关于坐标原点对称,故正确;
②?x>0,f(x)-3x
=sin2x-2,
令g(x)=sin2x-2,g'(x)=2(cos2x-1)<0,
∴g(x)递减,g(x)<g(0)=0,
∴f(x)<3x恒成立,故正确;
③由函数为奇函数,且值域为(-∞,+∞),
故无论R为何值,方程f(x)=k都有实数根,故错误;
④若数列{an}是公差为$\frac{π}{3}$的等差数列,且f(al)+f(a2)+f(a3)=3π,
∴al+a2+a3=3π,sin2al+sin2a2+sin2a3=0,
解得a2=π,故正确.
故答案为:①②④.

点评 考查了抽象函数的奇偶性,利用导函数判断函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知复数z=($\frac{1+i}{1-i}$)2016+(1-i)2(其中i为虚数单位).若复数z的共扼复数为$\overline{z}$,且$\overline{z}$•z1=4+3i.
(1)求复数z1及z1在复平面中对应点的坐标;
(2)若z1是关于x的方程x2-px+q=0的一个根,求实数p,q的值,并求出方程x2-px+q=0的另一个复数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A、B、C所对应的边分别为a、b、c,且(a+b+c)(a+b-c)=3ab.
(Ⅰ)求角C;
(Ⅱ)f(x)=$\sqrt{3}sin({2x-\frac{C}{2}})+2{sin^2}({x-\frac{π}{12}})$在区间$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)的导函数f′(x)=2+sinx,且f(0)=-1,数列{an}是以$\frac{π}{4}$为公差的等差数列,若f(a2)+f(a3)+f(a4)=3π,则$\frac{{a}_{2016}}{{a}_{2}}$=(  )
A.2016B.2015C.2014D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\sqrt{2}sin(θ+{45^0})=5sinθ$,则tanθ等于(  )
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.{an}为等差数列,公差d,首项a1,求证:Sn=na1+$\frac{n(n-1)d}{2}$(用数学归纳法).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x2-2x|+ax+a.
(1)当f(x)有两个零点时,求实数a的取值范围;
(2)当x∈R时,求函数的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=2sinωxcos(ωx+\frac{π}{3})$(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在区间$[-\frac{π}{6},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f′(x)是函数f(x)=ln(1+x)的导函数,设g(x)=xf′(x),x≥0.
(1)证明:f(x)≥g(x);
(2)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,归纳并用数学归纳法证明gn(x)的表达式.

查看答案和解析>>

同步练习册答案