分析 利用坐标原点是两焦点的中点,利用三角形的中位线的性质得到MO用焦半径表示;将MT用焦半径表示;利用圆的切线与过切点的半径垂直得到直角三角形;利用勾股定理及双曲线的定义,求出所求值.
解答 解:双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的a=2,b=$\sqrt{5}$,c=$\sqrt{{a}^{2}+{b}^{2}}$=3,
设双曲线的右焦点为F,
由O为FF1中点,M为PF1的中点,
可得MO为三角形PFF1的中位线,
|MO|=$\frac{1}{2}$|PF|,
又|MT|=|PT|-|PM|=|PF1|-|F1T|-$\frac{1}{2}$|PF1|=$\frac{1}{2}$|PF1|-|F1T|,
所以|MO|-|MT|=-$\frac{1}{2}$(|PF1|-|PF|)+|F1T|=|F1T|-a,
又a=2,
即有|F1T|=$\sqrt{|O{F}_{1}{|}^{2}-4}$=$\sqrt{9-4}$=$\sqrt{5}$.
所以|MO|-|MT|=$\sqrt{5}$-2.
故答案为:$\sqrt{5}$-2.
点评 本题考查双曲线的定义、方程和性质,在解决双曲线中的有关中点问题时,要注意坐标原点是两个焦点的中点、解决与双曲线的与焦点有关的问题常联系双曲线的定义.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,1) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最小值$\frac{\sqrt{2}}{2}$ | B. | 有最小值1 | C. | 无最小值 | D. | 最小值与p有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$(3n-1) | B. | $\frac{1}{2}$(3n+1) | C. | 3n | D. | 3n+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com