精英家教网 > 高中数学 > 题目详情
17.过双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦点F1,作圆x2+y2=4的切线交双曲线右支于点P,切点为T,PF1的中点为M,则|MO|-|MT|=$\sqrt{5}$-2.

分析 利用坐标原点是两焦点的中点,利用三角形的中位线的性质得到MO用焦半径表示;将MT用焦半径表示;利用圆的切线与过切点的半径垂直得到直角三角形;利用勾股定理及双曲线的定义,求出所求值.

解答 解:双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的a=2,b=$\sqrt{5}$,c=$\sqrt{{a}^{2}+{b}^{2}}$=3,
设双曲线的右焦点为F,
由O为FF1中点,M为PF1的中点,
可得MO为三角形PFF1的中位线,
|MO|=$\frac{1}{2}$|PF|,
又|MT|=|PT|-|PM|=|PF1|-|F1T|-$\frac{1}{2}$|PF1|=$\frac{1}{2}$|PF1|-|F1T|,
所以|MO|-|MT|=-$\frac{1}{2}$(|PF1|-|PF|)+|F1T|=|F1T|-a,
又a=2,
即有|F1T|=$\sqrt{|O{F}_{1}{|}^{2}-4}$=$\sqrt{9-4}$=$\sqrt{5}$.
所以|MO|-|MT|=$\sqrt{5}$-2.
故答案为:$\sqrt{5}$-2.

点评 本题考查双曲线的定义、方程和性质,在解决双曲线中的有关中点问题时,要注意坐标原点是两个焦点的中点、解决与双曲线的与焦点有关的问题常联系双曲线的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=|x-3|+2,g(x)=kx,若方程f(x)=g(x)有两个不相等实根,则实数k的范围(  )
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,1)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y2=8x的准线与双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的两条渐近线所围成的三角形面积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=2px(p>0),O为坐标原点,F为其焦点,准线与x轴交点为E,P为抛物线上任意一点,则$\frac{|PF|}{|PE|}$(  )
A.有最小值$\frac{\sqrt{2}}{2}$B.有最小值1C.无最小值D.最小值与p有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,则a0+a2+…+a2n的值是(  )
A.$\frac{1}{2}$(3n-1)B.$\frac{1}{2}$(3n+1)C.3nD.3n+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若($\sqrt{x}$+$\frac{a}{\sqrt{x}}$)4展开式的常数项和为54,且a>0,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求解下列问题:
(1)用排列数表示(55-n)(56-n)…(69-n)(n∈N*且n<55);
(2)计算$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$;
(3)解方程:${A}_{2x+1}^{4}$=140${A}_{x}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.i是虚数单位,若复数(a+bi)(1+i)=7-3i,则$\frac{a}{b}$的值为$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}满足a1=2,且an+1-an=2n(n∈N*),则数列$\{\frac{1}{a_n}\}$的前10项和为$\frac{1023}{1024}$.

查看答案和解析>>

同步练习册答案