精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,则不等式f(x)>1的解集为(-∞,0)∪(2,+∞).

分析 由已知分段函数把不等式f(x)>1分类,分别求解两个不等式组,取并集得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,
由f(x)>1,得:
$\left\{\begin{array}{l}{x>0}\\{lo{g}_{2}x>1}\end{array}\right.$①或$\left\{\begin{array}{l}{x≤0}\\{{2}^{-x}>1}\end{array}\right.$②.
解①得:x>2;
解②得:x<0.
∴不等式f(x)>1的解集为:(-∞,0)∪(2,+∞).
故答案为:(-∞,0)∪(2,+∞).

点评 本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在(2x2-$\frac{1}{\sqrt{x}}$)7的展开式中,
(1)求第4项的二项式系数及第4项的系数;
(2)求含x4的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=-$\frac{2x}{1+{x}^{2}}$,则f(x)的单调减区间是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={y|y=$\frac{x}{{1+{x^2}}}$},B={x|y=ln(2x+1)},则A∩B=(  )
A.(-$\frac{1}{2}$,1)B.(-$\frac{1}{2}$,1]C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:ex>1,命题q:lnx<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图)

(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N.当数据a,b,c的方差s2最大时,写出a,b,c的值.(结论不要求证明)
(注:s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将方程x2-2x+y2+4y=-1化解为圆的标准方程,并求出圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对任意实数x,若a(x2+1)≤0总成立,则a的范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π;
(I)求f(x)的解析式;
(2)把函数f(2x+$\frac{π}{3}$)的图象向左平移m(m>0)个单位使所得函数的图象关干点($\frac{π}{6}$,0)对称,求m的最小值.

查看答案和解析>>

同步练习册答案