分析 由已知分段函数把不等式f(x)>1分类,分别求解两个不等式组,取并集得答案.
解答 解:∵f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,
由f(x)>1,得:
$\left\{\begin{array}{l}{x>0}\\{lo{g}_{2}x>1}\end{array}\right.$①或$\left\{\begin{array}{l}{x≤0}\\{{2}^{-x}>1}\end{array}\right.$②.
解①得:x>2;
解②得:x<0.
∴不等式f(x)>1的解集为:(-∞,0)∪(2,+∞).
故答案为:(-∞,0)∪(2,+∞).
点评 本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,1) | B. | (-$\frac{1}{2}$,1] | C. | (-$\frac{1}{2}$,$\frac{1}{2}$) | D. | (-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com