精英家教网 > 高中数学 > 题目详情
19.若圆(x+1)2+(y-3)2=9上相异两点,P,Q关于直线kx+2y-4=0对称,则k的值为2.

分析 由题意可得圆心(-1,3)在直线kx+2y-4=0上,由此求得k的值.

解答 解:曲线(x+1)2+(y-3)2=9,表示以(-1,3)为圆心、半径等于3的圆,
∵圆上存在相异两点P,Q关于直线kx+2y-4=0对称,
则圆心在此直线上,故有-k+6-4=0,求得 k=2,
故答案为:2

点评 本题主要考查了圆的对称性,直线和圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在三棱锥A-BCD中,O为平面BCD内一点,若$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$),则O为△BCD的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设定义在(0,+∞)上的函数f(x)=axlnx-b(x2-1),其中a>0,b∈R..
(1)若a=1,b=0,求函数f(x)的极值;
(2)若不等式f(x)≤0在[1,+∞)上恒成立,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.两直线3x+4y-3=0与3x+4y+1=0平行,则它们之间的距离为(  )
A.4B.$\frac{4}{5}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan($\frac{π}{4}$+θ)等于(  )
A.2B.-3C.-1D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.极坐标方程ρ2cos 2θ=1表示的曲线是(  )
A.B.双曲线C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
组号第一组第二组第二组第四组
分组[70,80)[80,90)[90,100)[100,110)
频数642220
频率0.060.040.220.20
组号第五组第六组第七组第八组
分组[110,120)[120,130)[130,140)[140,150]
频数18a105
频率b0.150.100.05
(1)若频数的总和为c,试求a,b,c的值;
(2)估计该校本次考试的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正四棱柱ABCD-A1B1C1D1中,AB=1,CC1=2,点E为CC1的中点,则异面直线AC1与BE所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某企业寻找甲、乙两家代工厂为其生产某种产品,并通过检测该产品的某项指标值来衡量产品是否合格.现从甲、乙生产的大量产品中各随机抽取50件产品作为样本,测量出它们的该项指标值,若指标值落在(170,230]内,则为合格品,否则为不合格品.表是甲厂样本的频数分布表,如图是乙厂样本的频率分布直方图.
质量指标值频数
(150,170]3
(170,190]12
(190,210]20
(210,230]a
(230,250]7
表:甲厂样本的频数分布表
(I) 求频数分布表中a的值,并将频率分布直方图补充完整;
(II) 若将频率视为概率,某个月内,甲、乙两厂均生产了5000件产品,则甲、乙两厂分别生产出不合格品约多少件?
(III)根据已知条件完成下面的2×2列联表,并回答能否有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲、乙两厂的选择有关”?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲厂乙厂合计
 合格品
不合格品
合计
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

查看答案和解析>>

同步练习册答案