精英家教网 > 高中数学 > 题目详情
9.某企业寻找甲、乙两家代工厂为其生产某种产品,并通过检测该产品的某项指标值来衡量产品是否合格.现从甲、乙生产的大量产品中各随机抽取50件产品作为样本,测量出它们的该项指标值,若指标值落在(170,230]内,则为合格品,否则为不合格品.表是甲厂样本的频数分布表,如图是乙厂样本的频率分布直方图.
质量指标值频数
(150,170]3
(170,190]12
(190,210]20
(210,230]a
(230,250]7
表:甲厂样本的频数分布表
(I) 求频数分布表中a的值,并将频率分布直方图补充完整;
(II) 若将频率视为概率,某个月内,甲、乙两厂均生产了5000件产品,则甲、乙两厂分别生产出不合格品约多少件?
(III)根据已知条件完成下面的2×2列联表,并回答能否有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲、乙两厂的选择有关”?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲厂乙厂合计
 合格品
不合格品
合计
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

分析 (I)利用频数分布表直接求解a的值,将频率分布直方图补充完整;
(II) 将频率视为概率,直接求解某个月内,甲、乙两厂均生产了5000件产品,则甲、乙两厂分别生产出不合格品件数.
(III)利用公式K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,求出结果判断即可.

解答 解:( I)a=50-12-3-7-20=8,(210,230]的高度与(150,170]的高度相同, …(2分)
( II)由甲厂频数分布表知,不合格品有10件,则甲厂不合格品概率为${P_甲}=\frac{1}{5}$,所以甲厂生产的5000件产品中,不合格品大约为$5000×\frac{1}{5}=1000$件;  …(4分)
由乙厂频率分布直方图知,不合格品的频率为(0.01+0.005)×20=0.3件,则乙厂不合格品概率为${P_甲}=\frac{3}{10}$,所以乙厂生产的5000件产品中,不合格品大约为$5000×\frac{3}{10}=1500$件  …(7分)
( III)由题意可得

甲厂乙厂合计
合格品403575
不合格品101525
合计5050100
:${K^2}=\frac{{100×{{({600-350})}^2}}}{50×50×75×25}=\frac{4}{3}≈1.333<2.072$
所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲、乙两厂的选择有关”.…(12分)

点评 本题考查频率分布直方图,分布表以及独立检验的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若圆(x+1)2+(y-3)2=9上相异两点,P,Q关于直线kx+2y-4=0对称,则k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α∈(0,π),sin(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tanα=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为(  )
A.$\frac{1}{2}$B.$\frac{5}{16}$C.$\frac{7}{16}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F为  $({\sqrt{5},0})$,点F到某条渐近线的距离为1,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间中,给出下列四个命题:
①平行于同一直线的两条直线平行;   ②平行于同一平面的两条直线平行;
③垂直于同一直线的两条直线平行;   ④垂直于同一平面的两个平面平行.
其中正确命题的序号(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+(y-1)2=1,那么这两个圆的位置关系不可能是(  )
A.外离B.外切C.内含D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC的三边长分别为a=3,b=4,c=$\sqrt{37}$,则△ABC的面积为(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.6$\sqrt{3}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数)曲线C1横坐标扩大为原来的两倍,纵坐标扩大为原来的三倍得到曲线C2
(1)以原点为极点,x轴正半轴为极轴且单位长度一样的极坐标系中,求曲线C2的极坐标方程
(2)若M,N两点在曲线C2上,且OM⊥ON.求$\frac{1}{{{{|{OM}|}^2}}}+\frac{1}{{{{|{ON}|}^2}}}$的值.
(3)已知C3的参数方程为$\left\{\begin{array}{l}x=1-t\\ y=1+t\end{array}\right.(t为参数),P为{C_2}上的一点,求点P到直线{C_3}$的最大距离.

查看答案和解析>>

同步练习册答案