精英家教网 > 高中数学 > 题目详情
18.已知△ABC的三边长分别为a=3,b=4,c=$\sqrt{37}$,则△ABC的面积为(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.6$\sqrt{3}$D.12$\sqrt{3}$

分析 利用余弦定理求出三角形一个角的余弦函数值,然后求解正弦函数值,然后求解三角形的面积.

解答 解:△ABC的三边长分别为a=3,b=4,c=$\sqrt{37}$,
由余弦定理可得:37=9+16-2×3×4cosC,
∴cosC=$-\frac{1}{2}$,∵C∈(0,π),∴sinC=$\frac{\sqrt{3}}{2}$.
则△ABC的面积为:$\frac{1}{2}absinC$=$\frac{1}{2}×3×4×\frac{\sqrt{3}}{2}$=3$\sqrt{3}$.
故选:B.

点评 本题考查余弦定理的应用,三角形的面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知正四棱柱ABCD-A1B1C1D1中,AB=1,CC1=2,点E为CC1的中点,则异面直线AC1与BE所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某企业寻找甲、乙两家代工厂为其生产某种产品,并通过检测该产品的某项指标值来衡量产品是否合格.现从甲、乙生产的大量产品中各随机抽取50件产品作为样本,测量出它们的该项指标值,若指标值落在(170,230]内,则为合格品,否则为不合格品.表是甲厂样本的频数分布表,如图是乙厂样本的频率分布直方图.
质量指标值频数
(150,170]3
(170,190]12
(190,210]20
(210,230]a
(230,250]7
表:甲厂样本的频数分布表
(I) 求频数分布表中a的值,并将频率分布直方图补充完整;
(II) 若将频率视为概率,某个月内,甲、乙两厂均生产了5000件产品,则甲、乙两厂分别生产出不合格品约多少件?
(III)根据已知条件完成下面的2×2列联表,并回答能否有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲、乙两厂的选择有关”?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲厂乙厂合计
 合格品
不合格品
合计
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果直线3x-y=0与直线mx+y-1=0平行,那么m的值为(  )
A.-3B.$-\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC 中,a,b,c 分别是内角 A,B,C 的对边,若c=4$\sqrt{2}$,B=45°,△ABC 的面积S=2,则a=1;b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{{e^{-x}}}}{x}$.
(1)求曲线y=f(x)在点$(1,\frac{1}{e})$处的切线方程;
(2)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知a=$\sqrt{3}$-1,b=$\frac{\sqrt{6}}{2}$,C=$\frac{π}{4}$,则△ABC是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x-2lnx(a∈R).求曲线y=f(x)在点A(1,f(1))处的切线方程和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}+2x}&{x∈({-∞,2})}\\{3f({x-2})}&{x∈[{2,+∞})}\end{array}}$,则函数g(x)=f(x)-cosπx在区间[0,6]内所有零点的和为(  )
A.18B.20C.36D.40

查看答案和解析>>

同步练习册答案