精英家教网 > 高中数学 > 题目详情
8.已知正四棱柱ABCD-A1B1C1D1中,AB=1,CC1=2,点E为CC1的中点,则异面直线AC1与BE所成的角等于(  )
A.30°B.45°C.60°D.90°

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AC1与BE所成的角.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则A(1,0,0),C1(0,1,2),B(1,1,0),
E(0,1,1),
$\overrightarrow{A{C}_{1}}$=(-1,1,2),$\overrightarrow{BE}$=(-1,0,1),
设AC1与BE所成角为θ,
则cosθ=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{BE}|}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{BE}|}$=$\frac{3}{\sqrt{6}•\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
∴θ=30°.
∴异面直线AC1与BE所成的角为30°.
故选:A.

点评 本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.小明同学的书架上层放有8本不同的数学书,下层放有10本不同的英语书,小明要从中拿出一本书,则共有不同的拿法的种数为(  )
A.8B.10C.18D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若圆(x+1)2+(y-3)2=9上相异两点,P,Q关于直线kx+2y-4=0对称,则k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=log2x•log22x取得最小值时x的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.cos50°($\sqrt{3}$-tan10°)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$.在以坐标原点为极点,x轴正半轴为极轴建立的极坐标系中,点A的坐标为($\frac{\sqrt{2}}{2}$,$\frac{3}{4}$π).
(1)将点A的坐标化为直角坐标系下的坐标,椭圆的参数方程化为普通方程;
(2)直线l与椭圆C交于P、Q两点,求|AP|•|AQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α∈(0,π),sin(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tanα=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为(  )
A.$\frac{1}{2}$B.$\frac{5}{16}$C.$\frac{7}{16}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC的三边长分别为a=3,b=4,c=$\sqrt{37}$,则△ABC的面积为(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.6$\sqrt{3}$D.12$\sqrt{3}$

查看答案和解析>>

同步练习册答案