精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的部分图象如图所示
(1)求f(x)的解析式;
(2)写出f(x)的递增区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性
专题:三角函数的图像与性质
分析:(1)由函数的图象的顶点坐标求得A=
2
,再根据函数的周期求得ω,再根据五点法作图求得φ,从而求得函数的解析式.
(2)令2kπ-
π
2
π
8
x+
π
4
≤2kπ+
π
2
,k∈z,求得x的范围,可得f(x)的递增区间.
解答: 解:(1)由函数的图象可得A=
2
,再根据
T
4
=
1
4
ω
=2-(-2),求得ω=
π
8

再根据五点法作图可得
π
8
×(-2)+φ=0,∴φ=
π
4

故f(x)=
2
sin(
π
8
x+
π
4
 ).
(2)令2kπ-
π
2
π
8
x+
π
4
≤2kπ+
π
2
,k∈z,
求得 16k-6≤x≤16k+2,
可得函数f(x)的增区间为[16k-6,16k+2],k∈z.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a等于(  )
A、1B、-1
C、1或-1D、1或-1或0

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3-x的图象关于(  )
A、y轴对称B、x轴对称
C、原点对称D、y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,
(1)求函数的定义域;
(2)若函数f(x)在[1,+∞)上是单调递增函数,求a的取值范围;
(3)若a>1,求g(x)=f′(x)-
ax
x+1
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β是三角形的两个内角,则以下结论哪几个是正确的?并说明理由.
①sinα+sinβ≥sin(α+β);
②cosα+cosβ≥cos(α+β);
③sinα+sinβ≥cos(α+β);
④cosα+cosβ≥sin(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

{an}是等差数列,公差d>0,Sn是{an}的前n项和,已知a2a3=15,S4=16.
(1)求数列{an}的通项公式an
(2)令bn=
1
anan+1
,求数{bn}列的前n项之和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知抛物线C:y2=2px(p>0)经过点(2,4),A,B为抛物线C上异于坐标原点O的两个动点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若线段AB的中点坐标为(2,1),求直线AB的方程;
(Ⅲ)当
OA
OB
=0时,求证:直线AB恒过定点(2p,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ex,f(x)=
-g(x)+a
e•g(x)+b
,f(x)是定义在R上的奇函数.
(1)求a,b的值;
(2)若关于t的方程f(2t2-mt)+f(1-t2)=0有两个根α、β,且α>0,1<β<2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+2cosx,x∈(0,
π
2

(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案