精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+2cosx,x∈(0,
π
2

(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)的值域.
考点:利用导数研究函数的单调性,函数的值域
专题:计算题,导数的综合应用
分析:(Ⅰ)求导并令导数小于零,从而得单调递减区间;(Ⅱ)由单调性求函数的值域.
解答: 解:(Ⅰ)∵f(x)=x+2cosx,
∴令f′(x)=1-2sinx<0得,
π
6
<x<
π
2

∴函数f(x)的单调递减区间是(
π
6
π
2
).
(Ⅱ)∵f(
π
6
)=
π
6
+2×
3
2
=
3
+
π
6

f(0)=2,f(
π
2
)=
π
2

∴函数f(x)的值域为(
π
2
π
6
+
3
].
点评:本题考查了导数的综合应用,由导数求函数的单调性与区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的部分图象如图所示
(1)求f(x)的解析式;
(2)写出f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)计算:lg2+lg5+(
1
2
-2+
(π-2)2

(Ⅱ)已知
sinθ+cosθ
2sinθ-cosθ
=3,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个均匀的正四面体,四个面上分别标有数字1、2、3、4,现将四面体随机地抛掷两次.
(1)若记每个四面体朝下得面上的数字分别为x,y,求点(x,y)恰好在直线x-y-1=0上的概率;
(2)若记每个四面体能看到的三个面上的数字之和分别为a、b,求a+b≥15的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax-a+1),其中a是常数.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在定义域内是单调递增函数,求a的取值范围;
(Ⅲ)若关于x的方程f(x)=ex+k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,bn=
1
n
[lga1+lga2+…+lgan-1+lg(kan)],是否存在正数k,使数列{bn}为等差数列?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是圆C:(x+1)2+y2=8上的动点,定点D(1,0),点P在直线DM上,点N在直线CM上,且满足
DM
=2
DP
NP
DM
=0,动点N的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求△AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,且当x>0时,f(x)=x|x-2|,求x<0时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=2an-1+2n+1(n∈N,n>1),a3=27,数列{bn}满足bn=
1
2n
(an+t).
(1)若数列{bn}为等差数列,求bn
(2)在(1)的条件下,求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案