精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,
(1)求函数的定义域;
(2)若函数f(x)在[1,+∞)上是单调递增函数,求a的取值范围;
(3)若a>1,求g(x)=f′(x)-
ax
x+1
的单调区间.
考点:利用导数研究函数的单调性,函数的定义域及其求法
专题:导数的综合应用
分析:(1)根据对数函数的定义解出即可;
(2)先把f'(x)=ln(1+x)+
x
1+x
-a>0转化为a<ln(1+x)+
x
1+x
,再利用导函数研究出不等式右边的单调性,进而求出其最值即可求出实数a的取值范围;
(3)先求出函数g(x)的导函数,分情况得到导函数值为正和为负对应的变量的取值范围,进而求出其单调区间.
解答: 解:(1)∵x+1>0,
∴x>-1,
函数的定义域为(-1,+∞);
(2)由f'(x)=ln(1+x)+
x
1+x
-a>0
得a<ln(1+x)+
x
1+x

令h(x)=ln(1+x)+
x
1+x
,则h'(x)=
1
1+x
+
1
(1+x)2

当x∈[1,+∞)时,h'(x)>0,h(x)在[1,+∞)上递增,
∴a<h(1)=
1
2
+ln2.
∴实数a的取值范围是(-∞,
1
2
+ln2).
(3)g(x)=ln(1+x)+
(1-a)x
1+x
-a,x∈(-1,+∞),
则g'(x)=
x+2-a
(x+1)2
①当a>1时,x∈(-1,a-2),g'(x)<0,g(x)是减函数,
x∈(a-2,+∞)时,g'(x)>0,g(x)是增函数.
②当a≤1时,x∈(-1,+∞),g'(x)>0,g(x)是增函数.
所以:当a>1时,减区间为(-1,a-2),增区间为(a-2,+∞);
当a≤1时,增区间为(-1,+∞).
点评:本题主要研究利用导数研究函数的单调性.利用导数研究函数的单调性时,一般结论是:导数大于0对应区间为原函数的递增区间;导数小于0对应区间为原函数的递减区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间中,下列命题正确的是(  )
A、平行于同一平面的两条直线平行
B、平行于同一直线的两个平面平行
C、垂直于同一直线的两条直线平行
D、平行于同一平面的两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在R上既是奇函数又是减函数的是(  )
A、y=-x3
B、y=sinx
C、y=x
D、y=(
1
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

“关于x的不等式x2-2ax-a>0的解集为R”是“0<a<1”(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知A(1,1,3),B(2,-1,3).
(Ⅰ)求|AB|的长度;
(Ⅱ)将一个点P(x,y,z)的坐标x,y,z按如图的程序框图执行运算,得到对应点P0(x0,y0,z0)的坐标,试分别写出本题中A、B两点经此程序框图执行运算后的对应点A0、B0的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=(1+
1
n
n-n,其中n为正整数.
(1)求f(1),f(2),f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的部分图象如图所示
(1)求f(x)的解析式;
(2)写出f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1<x≤4,x∈N},请写出集合A的所有子集和真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个均匀的正四面体,四个面上分别标有数字1、2、3、4,现将四面体随机地抛掷两次.
(1)若记每个四面体朝下得面上的数字分别为x,y,求点(x,y)恰好在直线x-y-1=0上的概率;
(2)若记每个四面体能看到的三个面上的数字之和分别为a、b,求a+b≥15的概率.

查看答案和解析>>

同步练习册答案