精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\sqrt{2}$sinωx+$\sqrt{2}$cosωx(ω>0),在区间(-$\frac{π}{3}$,$\frac{π}{4}$)上单调递增,则ω的取值范围为(  )
A.(0,1]B.[1,2)C.[$\frac{1}{3}$,2)D.(2,+∞)

分析 利用辅助角公式化简函数的解析式为函数f(x)=2sin(ωx+$\frac{π}{4}$),在区间(-$\frac{π}{3}$,$\frac{π}{4}$)上单调递增,即可$-\frac{π}{3}ω≥-\frac{3π}{4}+2kπ$且$\frac{π}{4}ω≤\frac{π}{4}+2kπ$,k∈Z,根据ω>0,可得ω的取值范围.

解答 解:函数f(x)=$\sqrt{2}$sinωx+$\sqrt{2}$cosωx(ω>0),
化简可得:f(x)=2sin(ωx+$\frac{π}{4}$),
∵在区间(-$\frac{π}{3}$,$\frac{π}{4}$)上单调递增,
∴$-\frac{π}{3}ω≥-\frac{3π}{4}+2kπ$且$\frac{π}{4}ω≤\frac{π}{4}+2kπ$,k∈Z,
解得:$\left\{\begin{array}{l}{ω≤\frac{9}{4}-6k}\\{ω≤1+8k}\end{array}\right.$k∈Z,
∵ω>0,
当k=0时,可得0<ω≤1,
故选A

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设集合$A=\left\{{x\left|{\frac{2x+1}{x-2}≤0}\right.}\right\}$,B={x|x<1},则A∪B=(  )
A.$[{-\frac{1}{2},1})$B.(-1,1)∪(1,2)C.(-∞,2)D.$[{-\frac{1}{2},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图的程序框图,如果输入三个数a,b,c,(a2+b2≠0)要求判断直线ax+by+c=0与单位圆的位置关系,那么在空白的判断框中,应该填写下面四个选项中的(  )
A.c=0?B.b=0?C.a=0?D.ab=0?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是甲、乙两个商场统计同一时间段各自每天的销售额(单位:万元)的茎叶图,假设销售额的中位数为m,平均值为$\overline{x}$,则下列正确的是(  )
A.m=m,$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$B.m=m,$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$
C.m>m,$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$D.m<m,$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-3|-2|x+1|的最大值为m.
(1)求m的值和不等式f(x)<1的解集;
(2)若a,b∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则$\frac{{a}_{3}}{{a}_{2}}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知正四棱锥P-ABCD中,PA=AB=2,点M,N分别在PA,BD上,且$\frac{PM}{PA}$=$\frac{BN}{BD}$=$\frac{1}{3}$.
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=aex-x(a∈R),其中e为自然对数的底数,e=2.71828…
(Ⅰ)判断函数f(x)的单调性,并说明理由
(Ⅱ)若x∈[1,2],不等式f(x)≥e-x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足${b_n}={2^{a_n}}+1$,求数列{bn}的前n项和sn

查看答案和解析>>

同步练习册答案