精英家教网 > 高中数学 > 题目详情
17.已知三条直线l1、l2、l3,它们的倾斜角之比依次为1:2:3,若l2的斜率为$\sqrt{3}$,求其余两条直线的斜率.

分析 设直线l2的倾斜角为α,则tanα=$\sqrt{3}$,得到α=60,再根据比例,即可求出l1、l3的倾斜角,再根据斜率公式即可求出.

解答 解:设直线l2的倾斜角为α,则tanα=$\sqrt{3}$,
∴α=60°,
∵三条直线l1、l2、l3,它们的倾斜角之比依次为1:2:3,
∴l1、l3,它们的倾斜角分别为30°,90°,
∴l1的斜率为tan30°=$\frac{\sqrt{3}}{3}$,l3的斜率不存在.

点评 本题直线的斜率和倾斜角的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若cos2x>sin2x,x∈[0,π],则x的取值范围是(  )
A.[0,$\frac{π}{4}$)∪[$\frac{π}{2}$,$\frac{3}{4}$π]B.[0,$\frac{π}{4}$)∪($\frac{3}{4}π$,π]C.[0,$\frac{π}{4}$)∪($\frac{π}{2}$,$\frac{3}{4}$π]D.[$\frac{π}{2}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=cos(2x+$\frac{π}{6}$)的图象沿x向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,若P(x0,$\frac{1}{2}$)是函数y=g(x)的图象上一点,则sin($\frac{2π}{3}$-2x0)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}为等比数列,Sn是数列{an}的前n项和,且Sn>0,a6是a5、a4的等差中项,则数列{an}的公比q为(  )
A.-$\frac{1}{2}$或1B.$\frac{1}{2}$或1C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=cosωx(ω>0)在区间(-$\frac{π}{3}$,$\frac{π}{4}$)上有且只有两个极值点,则ω的取值范围是(  )
A.[2,3)B.(2,3]C.(3,4]D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.经过点(-3,0),且方向向量为$\overrightarrow{v}$=(5,-2)的直线l的方程是2x+5y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算下列各式:
(1)sin$\frac{25π}{3}$+cos$\frac{17π}{4}$+tan$\frac{23π}{6}$;
(2)tan(-$\frac{5π}{6}$)+cos(-$\frac{23π}{4}$)+sin(-$\frac{17π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\frac{lg(1-tanx)}{\sqrt{1-2sinx}}$的定义域是{x|$-\frac{π}{2}+2kπ<x<\frac{π}{6}+2kπ$或$\frac{5π}{6}+2kπ<x<\frac{5π}{4}+2kπ,k∈Z$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=|sinx|(x≥0)的图象与过原点的直线有且只有三个交点,交点的横坐标的最大值为α,则$\frac{{(1+{α^2})sin2α}}{α}$的值为(  )
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

同步练习册答案