| A. | 4 | B. | 6 | C. | 8 | D. | 9 |
分析 利用向量共线定理可得:2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.
解答 解:$\overrightarrow{AB}$=(a-1,1),$\overrightarrow{AC}$=(-b-1,2),
∵A,B,C 三点共线,∴2(a-1)-(-b-1)=0,化为:2a+b=1.
又a>0,b>0,则$\frac{1}{a}$+$\frac{2}{b}$=(2a+b)$(\frac{1}{a}+\frac{2}{b})$=4+$\frac{b}{a}$+$\frac{4a}{b}$≥4+2$\sqrt{\frac{b}{a}×\frac{4a}{b}}$=8,当且仅当b=2a=$\frac{1}{2}$时取等号.
故选:C.
点评 本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0<a<3 | B. | a<0或a≥3 | C. | a<0或a>3 | D. | a≤0或a≥3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $?x∈R,x_{\;}^2-x+\frac{1}{4}≥0$ | B. | $?x∈R,x_{\;}^2-x+\frac{1}{4}<0$ | ||
| C. | $?x∈R,x_{\;}^2-x+\frac{1}{4}≤0$ | D. | $?x∈R,{x^2}-x+\frac{1}{4}<0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年浙江普通高校招生学业水平考试数学试卷(解析版) 题型:选择题
如图,在四面体
中,
,
,
,点
,
,
,
分别在棱
,
,
,
上,若直线
,
都平行于平面
,则四边形
面积的最大值是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com