精英家教网 > 高中数学 > 题目详情
(ax-
1
x
8的展开式中x2的系数为70,则a=
 
考点:二项式定理的应用
专题:二项式定理
分析:先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中的x2的系数,再根据x2的系数为70,求得a的值.
解答: 解:(ax-
1
x
8的展开式中的通项公式为 Tr+1=
C
r
8
•(-1)r•a8-rx8-
3r
2

令8-
3r
2
=2,求得r=4,故x2的系数为
C
4
8
•a4=70,则a=±1,
故答案为:±1.
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=-tan(2x-
4
)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:(
1
1+12+14
)+(
2
1+22+24
)+…+(
100
1+1002+1004
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c∈R+,那么三个数a+
1
b
,b+
1
c
,c+
1
a
(  )
A、都不大于2
B、都不小于2
C、至少有一个不小于2
D、至少有一个不大于2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项公式为an=
1
n2+3n+2
,其前n项和为
7
18
,则n为(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)=ax2+bx+c是定义在R上的偶函数,一次函数g(x)=kx+t是定义在R上的奇函数,则b+t=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场对某种商品搞一次降价促销活动,现有四种降价方案.方案Ⅰ:先降价x%,后降价y%;方案Ⅱ:先降价y%,后降价x%;方案Ⅲ:先降价
x+y
2
%,后降价
x+y
2
%;方案Ⅳ:一次性降价(x+y)%(其中0<x,y<50).在上述四种方案中,降价最少的是(  )
A、方案ⅠB、方案Ⅱ
C、方案ⅢD、方案Ⅳ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+anan+1=0 (n∈N*)的两实根,且a1=1,记数列{an}的前n项和为Sn
(1)求a2,a3
(2)求证:数列{an-
1
3
×2n}
是等比数列;
(3)设bn=anan+1,问是否存在常数λ,使得bn>λSn对?n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有sin2α+sin2β=
 
.类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,则有正确的式子是
 

查看答案和解析>>

同步练习册答案