精英家教网 > 高中数学 > 题目详情
11.已知复数z=a+1-ai(i为虚数单位)为纯虚数,则实数a=-1.

分析 根据复数为纯虚数的充要条件列出方程组,求出a的值即可.

解答 解:∵复数z=a+1-ai(i为虚数单位)为纯虚数,
∴$\left\{\begin{array}{l}{a+1=0}\\{-a≠0}\end{array}\right.$,解得a=-1,
故答案为:-1.

点评 本题考查复数为纯虚数的充要条件,牢记复数的基本概念是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.由曲线y=sinx,y=cosx与直线x=0,x=$\frac{π}{2}$所围成的平面图形(下图中的阴影部分)的面积是2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.i为虚数单位,则$\frac{1-2i}{{{{(1+i)}^2}}}$=$-1-\frac{1}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={a,b,c},集合A={x|x⊆M},则集合A有几个元素(  )
A.3B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题:“若a>0,b>0,a3+b3=2,则a+b≤2”时,反设正确的是(  )
A.a+b≤2B.a+b<2C.a+b≥2D.a+b>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=ex,g(x)=ax2+bx+c.
(Ⅰ)$g(0)=1,g(1)=\frac{5}{2},g(-1)=\frac{1}{2}$.
(i)求g(x)的表达式;
(ii)令h(x)=f(x)-g(x),证明:函数h(x)恰有一个零点;
(Ⅱ)求证:$(1+\frac{1}{3})(1+\frac{1}{3^2})(1+\frac{1}{3^3})…(1+\frac{1}{3^n})<\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则a+2b+5c等于(  )
A.4B.5C.7D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xoy中,锐角α的顶点为坐标原点,始边在x轴的非负半轴上,角α的终边与单位圆交于点P($\frac{2\sqrt{5}}{5}$,y).
(Ⅰ)求sinα和cosα的值;          
(Ⅱ)求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.变量x,y满足约束条件:$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{kx+y-2k≤0}\end{array}\right.$,当k≥2时,对应的可行域面积为s,则z=$\frac{ks}{k+2}$的范围是[0,+∞).

查看答案和解析>>

同步练习册答案