精英家教网 > 高中数学 > 题目详情
1.由曲线y=sinx,y=cosx与直线x=0,x=$\frac{π}{2}$所围成的平面图形(下图中的阴影部分)的面积是2$\sqrt{2}$-2.

分析 三角函数的对称性可得S=2${∫}_{0}^{\frac{π}{4}}(cosx-sinx)dx$,求定积分可得.

解答 解:由三角函数的对称性和题意可得S=2${∫}_{0}^{\frac{π}{4}}(cosx-sinx)dx$
=2(sinx+cosx)${|}_{0}^{\frac{π}{4}}$=2($\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$)-2(0+1)=2$\sqrt{2}$-2
故答案为:2$\sqrt{2}$-2

点评 本题考查三角函数的对称性和定积分求面积,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.复数$\frac{5}{i-2}$的共轭复数是(  )
A.2+iB.-2-iC.-2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(α)=\frac{{sin(α-π)cos(2π-α)cos(-α+\frac{3}{2}π)}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$
(1)化简f(α);
(2)若$f(θ-\frac{π}{3})=-\frac{1}{7}$,$-\frac{π}{2}<θ<\frac{π}{2}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$y=\frac{2x+4}{x-2},x∈[0,3]且x≠2$的值域为(-∞,-2]∪[10,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x∈R,命题p:x>0,命题q:x+sinx>0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列四个命题:
①函数$y=2sin(2x-\frac{π}{3})$的一条对称轴是x=$\frac{5π}{12}$;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③正弦函数在第一象限为增函数
④存在实数α,使sinα+cosα=$\frac{3}{2}$
以上四个命题中正确的有①②(填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos570°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sinx=\frac{{\sqrt{3}}}{5}(\frac{π}{2}<x<π)$,则x的值(  )
A.$arcsin\frac{{\sqrt{3}}}{5}$B.arcsin(-$\frac{\sqrt{3}}{5}$)C.π-arcsin$\frac{{\sqrt{3}}}{5}$D.$\frac{π}{2}+arcsin\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z=a+1-ai(i为虚数单位)为纯虚数,则实数a=-1.

查看答案和解析>>

同步练习册答案