精英家教网 > 高中数学 > 题目详情
8.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(  )
A.B.C.D.

分析 根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能

解答 解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,
则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,
且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,
故选D

点评 本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设抛物线E:y2=4x的焦点为F,准线为l,过抛物线上一点P作l的垂线,垂足为A,设B(7,0),PF与AB交于点C,若△PBC的面积为2$\sqrt{2}$,则|PC|:|CF|=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{3x}{ax+b}$,f(1)=1,f($\frac{1}{2}$)=$\frac{3}{4}$,数列{xn}满足x1=$\frac{3}{2}$,xn+1=f(xn),n∈N*
(Ⅰ)求x2,x3
(Ⅱ)求数列{xn}的通项公式.
(Ⅲ)求证:$\sum_{k=1}^{n}\frac{{x}_{k}}{{3}^{k}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,6),$\overrightarrow{b}$=(-1,λ),若$\overrightarrow{a}∥\overrightarrow{b}$,则λ=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2,a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x-a)cosx-sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x<2},B={x|3-2x>0},则(  )
A.A∩B={x|x<$\frac{3}{2}$}B.A∩B=∅C.A∪B={x|x<$\frac{3}{2}$}D.AUB=R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=x2+$\frac{1}{x}$在点(1,2)处的切线方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x<1},B={x|3x<1},则(  )
A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足z(1+i)=2i,则z的共轭复数$\overline{z}$等于(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

同步练习册答案