精英家教网 > 高中数学 > 题目详情
14.若等差数列{an}和等比数列{bn}满足a1=b1=-1,a4=b4=8,则$\frac{{a}_{2}}{{b}_{2}}$=1.

分析 利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.

解答 解:等差数列{an}和等比数列{bn}满足a1=b1=-1,a4=b4=8,
设等差数列的公差为d,等比数列的公比为q.
可得:8=-1+3d,d=3,a2=2;
8=-q3,解得q=-2,∴b2=2.
可得$\frac{{a}_{2}}{{b}_{2}}$=1.
故答案为:1.

点评 本题考查等差数列以及等比数列的通项公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=cos(x+$\frac{π}{3}$),则下列结论错误的是(  )
A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=$\frac{8π}{3}$对称
C.f(x+π)的一个零点为x=$\frac{π}{6}$D.f(x)在($\frac{π}{2}$,π)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知曲线C1:y=cosx,C2:y=sin(2x+$\frac{2π}{3}$),则下面结论正确的是(  )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{12}$个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{12}$个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sinα-cosα=$\frac{4}{3}$,则sin2α=(  )
A.-$\frac{7}{9}$B.-$\frac{2}{9}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px过点P(1,1).过点(0,$\frac{1}{2}$)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{15}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}中,b1=1,bn+1-bn=2
(1)求数列{an},{bn}的通项an和bn
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:

(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
 箱产量<50kg                  箱产量≥50kg
旧养殖法           
新养殖法             
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
P(K2≥k)   0.0500.010           0.001            
k3.841      6.635     10.828    
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案