精英家教网 > 高中数学 > 题目详情
6.已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{15}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{3}}{3}$

分析 【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.
【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.

解答 解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,
则AB1、BC1夹角为MN和NP夹角或其补角
(因异面直线所成角为(0,$\frac{π}{2}$]),
可知MN=$\frac{1}{2}$AB1=$\frac{\sqrt{5}}{2}$,
NP=$\frac{1}{2}$BC1=$\frac{\sqrt{2}}{2}$;
作BC中点Q,则△PQM为直角三角形;
∵PQ=1,MQ=$\frac{1}{2}$AC,
△ABC中,由余弦定理得
AC2=AB2+BC2-2AB•BC•cos∠ABC
=4+1-2×2×1×(-$\frac{1}{2}$)
=7,
∴AC=$\sqrt{7}$,
∴MQ=$\frac{\sqrt{7}}{2}$;
在△MQP中,MP=$\sqrt{{MQ}^{2}{+PQ}^{2}}$=$\frac{\sqrt{11}}{2}$;
在△PMN中,由余弦定理得
cos∠MNP=$\frac{{MN}^{2}{+NP}^{2}{-PM}^{2}}{2•MH•NP}$=$\frac{{(\frac{\sqrt{5}}{2})}^{2}{+(\frac{\sqrt{2}}{2})}^{2}{-(\frac{\sqrt{11}}{2})}^{2}}{2×\frac{\sqrt{5}}{2}×\frac{\sqrt{2}}{2}}$=-$\frac{\sqrt{10}}{5}$;
又异面直线所成角的范围是(0,$\frac{π}{2}$],
∴AB1与BC1所成角的余弦值为$\frac{\sqrt{10}}{5}$.
【解法二】如图所示,
补成四棱柱ABCD-A1B1C1D1,求∠BC1D即可;
BC1=$\sqrt{2}$,BD=$\sqrt{{2}^{2}{+1}^{2}-2×2×1×cos60°}$=$\sqrt{3}$,
C1D=$\sqrt{5}$,
∴${{BC}_{1}}^{2}$+BD2=${{C}_{1}D}^{2}$,
∴∠DBC1=90°,
∴cos∠BC1D=$\frac{\sqrt{2}}{\sqrt{5}}$=$\frac{\sqrt{10}}{5}$.

点评 本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin(2x+$\frac{π}{3}$)的最小正周期为(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:b1+b3+b5+…+b2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若等差数列{an}和等比数列{bn}满足a1=b1=-1,a4=b4=8,则$\frac{{a}_{2}}{{b}_{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设{an}和{bn}是两个等差数列,记cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.
(1)若an=n,bn=2n-1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时,$\frac{{c}_{n}}{n}$>M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方形ABCD的边长为1,E,F是平面ABCD同一侧的两点,AE∥FC,AE⊥AB,AE=1,DE=$\sqrt{2}$,FC=$\frac{1}{2}$.
(1)证明:CD⊥平面ADE;
(2)求三棱锥E-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法不正确的是(  )
A.随机变量ξ,η满足η=2ξ+3,则其方差的关系为D(η)=4D(ξ)
B.回归分析中,R2的值越大,说明残差平方和越小
C.画残差图时,纵坐标一定为残差,横坐标一定为编号
D.回归直线一定过样本点中心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$ 是互相垂直的单位向量,若$\sqrt{3}$$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$  与$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$的夹角为60°,则实数λ的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案