精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-x+c(a,c∈R)的图象在x=1处的切线斜率为4.
(Ⅰ)若函数f(x)图象过点(0,-2),求f(x)的最大值;
(Ⅱ)设函数g(x)=[f(x)-x3]•ex,若函数g(x)在x∈[-2,3]上单调递增,求实数c的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:(Ⅰ)求出导数f′(x),由f′(1)=4,求出a,同时求出c,令f′(x)大于0,小于0,求出单调区间,求出最大值;
(Ⅱ)求出导数g′(x),由条件可得x2+x+c-1≥0在[-2,3]上恒成立,再由参数分离,求出二次函数的最值,即可得到c的范围.
解答: 解:(Ⅰ)由f(x)=x3+ax2-x+c(a,c∈R),得 f′(x)=3x2+2ax-1,
由题意知,f′(1)=3+2a-1=4,a=1.   
函数f(x)图象过点(0,-2),∴c=-2,
∴f(x)=x3+x2-x-2,f′(x)=3x2+2x-1=(3x-1)(x+1),
f(x)在(-∞,-1),(
1
3
,+∞)上为增函数,在(-1,
1
3
)上为减函数,
∴f(x)在x=-1时取得最大值,且最大值为-1;   
(Ⅱ)函数g(x)=(f(x)-x3)•ex=(x2-x+c)•ex
有g′(x)=(2x-1)•ex+(x2-x+c)•ex=(x2+x+c-1)•ex
∵函数g(x)在区间[-2,3]上单调递增,
等价于x2+x+c-1≥0在[-2,3]上恒成立,∴c-1≥(-x2-x)max
而当x∈[-2,3]时,(-x2-x)max=
1
4
,此时x=-
1
2

∴c-1
1
4
即c
5
4

∴c的取值范围是:[
5
4
,+∞).
点评:本题考查导数的综合运用:求切线方程和求单调区间、求最值,考查参数分离、二次函数在给定区间上的最值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

i是虚数单位,复数
2i
i-1
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥1
y≤2
x-y≤0
,则x+y的最小值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:以平面内不共线的两个向量
p
q
所在直线为x轴和y轴建立坐标系,坐标原点为O,对于平面内任意一点M,如果满足
OM
=x
p
+y
q
,则称点M的坐标为(x,y).已知|
p
|=1,|
q
|=2,向量
p
q
的夹角为60°,如果A(1,1),B(2,3),C(-2,-1),则
OC
AB
的值是(  )
A、-4
B、-15
C、-
13
2
D、-10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
x
2
,-sin
x
2
),
b
=(cos
3x
2
,sin
3x
2
),f(x)=
a
b
+t|
a
+
b
|,x∈[0,
π
2
].
(Ⅰ)若f(
π
3
)=-
9
2
,求函数f(x)的值域;
(Ⅱ)若关于x的方程f(x)+2=0有两个不同的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起到△APM,使得平面APM⊥平面ABCM,点E在线段PB上,且PE=
1
3
PB.
(Ⅰ)求证:AP⊥BM;
(Ⅱ)求三棱锥ABEM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-3≤x≤1},B={x|a-1≤x≤2a+3},若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-
5
2
|+|x-a|,x∈R.
(Ⅰ)求证:当a=-
1
2
时,不等式lnf(x)>1成立.
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为培养学生良好的学习习惯,学校对高一年级中的110名学生进行了有关作业量的调查,统计数据如下表:
认为作业多认为作业不多合计
喜欢玩游戏4020
不喜欢玩游戏20
合计
(Ⅰ)请补充完成2×2列联表,并根据此表判断:喜欢玩游戏与作业量是否有关?
(Ⅱ)若从喜欢玩游戏的60名学生中利用分层抽样的方法抽取6名,再从这6名学生中任取4名,求这4名学生中“认为作业多”的人数X的分布列与数学期望.附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案