精英家教网 > 高中数学 > 题目详情
9.在平面几何中,若正三角形的内切圆面积为S1,外接圆面积为S2,则$\frac{S_1}{S_2}=\frac{1}{4}$,类比上述命题,在空间中,若正四面体的内切球体积V1,外接球体积为V2,则$\frac{V_1}{V_2}$=1:27.

分析 平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的外接球和内切球的半径之比是 3:1,从而得出正四面体的内切球体积为V1,外接球体积为V2之比.

解答 解:从平面图形类比空间图形,从二维类比三维,
可得如下结论:正四面体的外接球和内切球的半径之比是 3:1
故正四面体的内切球体积为V1,外接球体积为V2之比等于$\frac{V_1}{V_2}$=1:27.
故答案为:1:27.

点评 主要考查知识点:类比推理,简单几何体和球,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是公比为d的等比数列,且a1与a2的算术平均数恰好是a3
(1)求d;
(2)设{bn}是以2为首项,d为公差的递减等差数列,其前n项和为Sn,比较Sn与bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是R上的增函数,A(0,-2),B(3,2)是其图象上的两点,记不等式|f(x+2)|<2的解集M,则∁RM=(  )
A.(-2,1)B.(-1,2)C.(-∞,-2]∪[1,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.终边与x轴重合的角α的集合是(  )
A.{α|α=2kπ,k∈Z}B.{α|α=kπ,k∈Z}C.{α|α=$\frac{kπ}{2}$,k∈Z}D.{α|α=kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是首项a1=1,公差为2的等差数列,数列{bn}是首项b1=1,公比为3的等比数列.数列{cn}满足cn=an•bn
(1)求数列{an},{bn}的通项公式;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于函数f(x)=aex+x,若存在实数m,n,使得f(x)≥0的解集为[m,n](m<n),则实数a的取值范围是(  )
A.(-$\frac{1}{e}$,0)∪(0,+∞)B.[-$\frac{1}{e}$)∪(0,+∞)C.(-$\frac{1}{e}$,0)D.[-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,已知B=75°,A=45°,c=10,则a=$\frac{10\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}kx+2,\;x≥0\\{({\frac{1}{2}})^x},\;x<0\end{array}$,若函数y=f[f(x)]-$\frac{3}{2}$有且只有3个零点,则实数k的取值范围是(-$\frac{1}{2}$,-$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)≤4;
(2)若存在x使得f(x)+a≤0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案