精英家教网 > 高中数学 > 题目详情

已知⊙和点.

(Ⅰ)过点向⊙引切线,求直线的方程;
(Ⅱ)求以点为圆心,且被直线截得的弦长为4的⊙的方程;
(Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

(Ⅰ) ;(Ⅱ) 
(Ⅲ)可以找到这样的定点,使得为定值. 如点的坐标为时,比值为
的坐标为时,比值为

解析试题分析:(Ⅰ)设切线方程为 ,易得,解得……4分
∴切线方程为 
(Ⅱ)圆心到直线的距离为,设圆的半径为,则,
∴⊙的方程为 
(Ⅲ)假设存在这样的点,点的坐标为,相应的定值为
根据题意可得,∴,
  (*),
又点在圆上∴,即,代入(*)式得:
  
若系数对应相等,则等式恒成立,∴
解得 
∴可以找到这样的定点,使得为定值. 如点的坐标为时,比值为
的坐标为时,比值为
考点:本题主要考查圆的标准方程,直线方程,直线与圆的位置关系。
点评:中档题,涉及圆的题目,在近些年高考题中是屡有考查,求圆标准方程,研究直线与圆的位置关系。求圆的标准方程,主要考虑定义法、待定系数法。涉及直线于圆位置关系问题,往往应用韦达定理或充分利用“特征三角形”,通过半径、弦长一半、圆心到弦的距离,建立方程(组)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,
(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线过定点.
(1)求圆心的坐标和圆的半径
(2)若与圆C相切,求的方程;
(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
在直角坐标系中,直线为参数),在极坐标系中(以原点为极点,以轴正半轴为极轴),圆C的方程:
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于两点,点的坐标,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题11分)已知圆,过原点的直线与圆相交于两点
(1) 若弦的长为,求直线的方程;
(2)求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知⊙C经过点两点,且圆心C在直线上.
(1)求⊙C的方程;
(2)若直线与⊙C总有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C1与圆C2相交于A、B两点,
(1)求公共弦AB所在的直线方程;
(2)求圆心在直线上,且经过A、B两点的圆的方程.

查看答案和解析>>

同步练习册答案