精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )

A. B. C. D.

【答案】D

【解析】根据图形的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积为,所求概率为,故选D.

点睛: (1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中装有个大小相同的黑球和白球.已知从袋中任意摸出个球,至少得到个白球的概率是.

(1)求白球的个数;

(2)从袋中任意摸出个球,记得到白球的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.

(1)写出 之间的函数关系式;

(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面是线段的中点。

1)求证:平面

2)试在线段上确定一点,使得平面,并加以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程表示焦点在轴上的椭圆,命题双曲线的离心率,若“”为假命题,“”为真命题,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.

(1)求曲线C的轨迹方程

(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()

(结果精确到0.1.参考数据:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N* , 将数列{an}中落入区间(9m , 92m)内的项的个数记为bm , 求数列{bm}的前m项和Sm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的xy,有f(1)2,.

1)求f(0)的值;

2)求证:对任意x,都有f(x)>0

3)解不等式f(32x)>4

查看答案和解析>>

同步练习册答案