精英家教网 > 高中数学 > 题目详情

【题目】四棱锥中,PC⊥面ABCD,直角梯形ABCD中,∠B=C=90°AB=4CD=1PC=2,点MPB上且PB=4PMPB与平面PCD所成角为60°.

1)求证:

2)求二面角的余弦值.

【答案】1)证明见解析.2

【解析】

1)在线段AB上取一点N,使,可证平面,由,可得,得到平面,从而可证面面平行,再根据面面平行得结果
2)以C为原点,CBCDCP所在直线为轴,轴,轴,建立空间坐标系,用向量法求解二面角.

1)在线段AB上取一点N,使

因为,所以

所以为平行四边形,

所以 平面平面,平面

在三角形ABP中,,所以

平面平面,平面

所以平面MNC//平面PAD,又平面MNC

所以CM平面PAD

2)以C为原点,CBCDCP所在直线为轴,轴,轴,建立空间坐标系.

ABCD,所以

又因为,所以

所以在面PCD的射影为PC

所以与平面PCD所成角,

所以

所以

.

法向量

法向量

,所以

所以

所以二面角所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为E移动时单位时间内的淋雨量包括两部分:(1PP的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记E移动过程中的总淋雨量,当移动距离d=100,面积S=时。

1)写出的表达式

2)设0v≤10,0c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,且.过椭圆的右焦点作长轴的垂线与椭圆,在第一象限交于点,且满足.

1)求椭圆的标准方程;

2)若矩形的四条边均与椭圆相切,求该矩形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是平行四边形,平面平面为正三角形,.

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】CPI是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.同比一般情况下是今年第n月与去年第n月比;环比,表示连续2个统计周期(比如连续两月)内的量的变化比.如图是根据国家统计局发布的20194—20204月我国CPI涨跌幅数据绘制的折线图,根据该折线图,则下列说法正确的是(

A.20201CPI同比涨幅最大

B.20194月与同年12月相比较,4CPI环比更大

C.20197月至12月,CPI一直增长

D.20201月至4CPI只跌不涨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,正方形所在平面垂直于平面是等腰直角三角形,.

1)求证:平面

2)若的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若函数在区间上有唯一的极值点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数.

(Ⅰ)当时,求的解集;

(Ⅱ)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小赵和小王约定在早上之间到某公交站搭乘公交车去上学,已知在这段时间内,共有班公交车到达该站,到站的时间分别为,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________

查看答案和解析>>

同步练习册答案